

of the Federal Republic of Germany

23rd Meeting of the Parties to the Montreal Protocol

Applications for low-GWP replacement of HCFC22

20th – 25th November 2011, Bali, Indonesia

Daniel Colbourne

d.colbourne@re-phridge.co.uk

Introduction

- Use of low-GWP (<150) refrigerants often raised within
 Montreal Protocol discussion
 - —Which low-GWP refrigerants?
 - —Suitable for what sectors?
 - —Possible implications?
- Often disagreement/lack of understanding
- GIZ Publication short guide intended to provide
 Parties with general guidance as to what can be used
 where and how easy/difficult it is
- Based on experience in Article 5 and non-Article 5 countries

Key messages

- Publication summarises
- High priorities for the introduction of low-GWP technologies are seen in particular for portable, split & window air conditioners, centralised retail refrigeration and cold storages.
- By targeting the high-priority sub-sectors, some 70% of the HCFC-22 consumption for new systems and installations can be avoided.
- Most suitable low-GWP options are natural refrigerants CO2, Ammonia and R290 (propane)

Key messages

- Publication summary...
- High priorities for the introduction of low-GWP technologies are seen in particular
 - —for portable, split, window air conditioners
 - —centralised retail refrigeration
 - Industrial and cold storage
- By targeting the high-priority sub-sectors, ~70% of the HCFC-22 consumption for new systems and installations can be avoided.
- Most suitable low-GWP options are currently natural refrigerants CO2, Ammonia and R290 (propane)

Overview of RAC sector

		low-	Consumption of R22			
Sub-sector	Equipment type	GWP priority	New (kt)	Service (kt)	Share (%)	
Retail refrigeration	Stand-alone	High	neg	neg	<1%	
	Cond units	Med	4,500	16,000	8%	
	Centralised	High	3,000	9,000	14%	
Cold storage/ind	all	High	15,000	12,000	7%	
Transport refrig	Road, rail, marine	High	neg	neg	<1%	
Stationary air conditioning	Split, window	High	58,000	54,000	45%	
	Multi-split/VRF	Low	14,000	14,000	15%	
	Rooftop/ducted	Med	2,500	3,000	4%	
	Chillers	High	5,000	9,500	4%	
Heat pumps	hot water, central	High	900	200	<1%	

Breakdown for each sub-sector

Refrigerant options

- —Typically HCs (R290, R1270), R717 (ammonia), R744 (CO2)
- —Also includes some in indirect/secondary systems

Cost effectiveness

- —IOC and ICC
- —Values provided are in range; due to differences amongst equipment types, location, specific refrigerant option, etc
- —NOTE: Try to address REAL costs, not negotiated HPMP-type costs

Emissions reduction

-Approx. =
$$M_{R22} \times GWP_{R22} \times (EF_{use} \times N + EF_{eol}) / (M_{R22} \times 1000)$$

Retail refrigeration

- Stand-alone cabinets
 - Available withR290, R1270, R744

- Condensing units
 - -Available with R290, R1270, R744

- —Many installed withR744, R717, R290, R1270
- —Several alternative concepts

Retail refrigeration

	Low- %	Cost implications		Emission red	
Equipment type	GWP refts	easily applied	ICC (\$/kgR22)	IOC (\$/kgR22)	tCO2e/ kg R22
Refrigerated/ freezer cabinets (integral)	R290, R744	High			2.7
Refrigerated/ freezer cabinets (condensing units)	R290, R744	Low			4.5
Refrigerated/ freezer cabinets (centralised)	R744, [R290, R1270, R717]*	Med	0 20	0 20 40 60	8.1

Cold storage / food processing and industrial

- Storage cabinets/coldrooms (integral)
 - —Available with R290 and R744

—Available with R717, R744

- Cold storage, process (centralised)
 - -Often used with R717, R744
 - —Available with R290, R1270

Cold storage / food processing and industrial

Equipment	Low-GWP	% easily applied	Cost imp	Emission red	
type	refts		ICC (\$/kg)	IOC (\$/kg)	tCO2e/ kg R22
Storage cabinets and coldrooms (integral)	R290, R1270, R744	High			3.2
Cold storage, process (cond units)	R290, R1270, R744, R717, [R290, R1270, R717]*	Low			5.4
Cold storage, process (centralised)	R744, R290, R1270, R717 [R290, R1270, R717]*	High	0 20	0 20 40	8.1

Transport refrigeration

- Refrigerated trucks and trailers
 - —Available with R290 and R744
 - —Reefer containers available with R744

Transport refrigeration

	Low-GWP refts	% easily applied	Cost imp	Emission	
Equipment type			ICC (\$/kg)	IOC (\$/kg)	red tCO2e/ kg R22
Refrig trailers, trucks	R290, R1270, R744	High			6.3
Refrig railcars	R744	High			6.3
Marine refrig	R744, R717	High	0 20 40 60	0 20 40 60	10.8

Stationary air conditioning

- Split, window
 - —Available with R290, R1290
- Multi-split
 - —Available with R744
 - —Alternatively use R290, R744, R717 chilers, etc.
- Rooftop/ ducted
 - —Available with R290, R744
- Chillers
 - —Available with R290, R1270, R7

Stationary air conditioning

Equipment	Low-GWP	% easily applied	Cost imp	Emission	
type	refts		ICC (\$/kg)	IOC (\$/kg)	red tCO2e/ kg R22
Split, window	R290, R1270, R744	High			3.2
Multi-split	R744, [R290, R1270, R717]*	Low			2.7
Rooftop/ ducted	R744, R290, R1270	Med/low			2.7
chillers	R290, R1270, R717	High	0 20 40 60	0 20 40 60 80	1.8

Special interventions to help overcome barriers

Awareness-raising

Highlight the importance of the (climate)
 problem and the possibilities of (low-GWP)
 options available

Critical to adopt dedicated training –
 specific to each individual low-GWPs and
 specific to application/end use

Guidance

 High quality guidance of what low-GWP alternative, when, where and how; also targeted to specific stakeholder groups

Special interventions to help overcome barriers

Technical development

 Improving efficiency of R744 AC systems for warm climates, reducing refrigerant charge sizes for systems using flammables, safety controls for systems using flammables

Market development

—Stimulate industry involvement with low-GWP alternatives; encourage local manufacturing, product directories, etc

Financial incentives

—Subsidies for using low-GWP, tax incentives for low-GWP/tax disincentives for high-GWP

Special interventions to help overcome barriers

- Regulatory infrastructure
 - Impose better control of industry to work safely, modify regulations that inhibit low-GWP alternatives, ensure safety standards are constructive
- Montreal Protocol substantive issues
 - Decision-making bodies to introduce more incentives, HPMP consultants should be better assisted to embrace low-GWP alternatives
- ENGOs to more actively lobby on the high/low-GWP issue

Final remarks

 Short publication aimed to provide NOUs and industry with an overview of targets for low-GWPs

 Analysis of different sub-sectors and equipment types indicate suitable areas for early adoption of low-GWP refrigerants

Large study in progress

of the Federal Republic of Germany

Thank you for your attention!