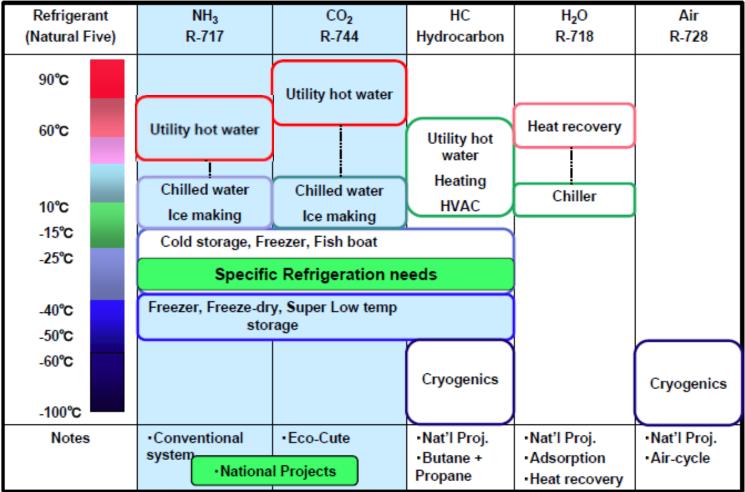


EU Sphere Solutions for Europe

natural refrigerants

5 – 7 November 2012 in Brussels

Presented by Jan Boone, MAYEKAWA


NATURAL 5 LINE-UP

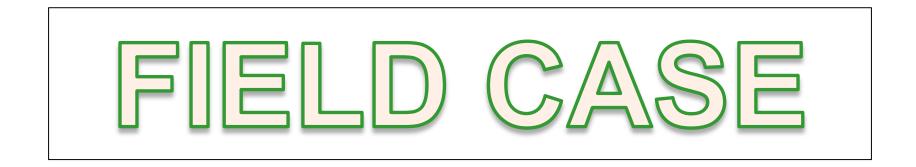
"Natural Five" Refrigerants and Product Solutions

MAYEKAWA Europe nv/sapoc.2012-368 R5a

natural refrigerants

FIELD CASES :

NATURAL REFRIGERANTS In Different Industrial HEAT PUMP plants in Norway


NH3 COMPRESSION HEAT PUMPS

MAYEKAWA Europe nv/sapoc.2012-368 R5a

SLAUGHTERHOUSE – HOT WATER PRODUCTION

INTRODUCTION

Starting point, need?	The plant is a Norvegian slaughterhouse existing since 1950, with about 30 plants in operation.
	In 1987 a centralisation and modernisation of the sites took place with NH3 as preferred refrigerant. Since 1989 NH₃ compression heat pumps are used for production of
	50°C water for 1200kW.
	In 2007 a hybrid heat pump was installed for 500kW.
Requirements 2009?	As there was an important need for more hot water because of production modernisation & extension,
2400kW 52°C	it was decided to increase the hot water production with an additional 2400 kW.
	The contractor THERMA INDUSTRI received the request to install 2 sets MYCOM NH ₃ overcompression heat pump screw compressors.

Why natural refrigerants	
+52°C	
Which choice	NH₃ (TC=+57°C & PD=23 barg) as natural refrigerant to obtain 52°C hot water. Heat source : rejected condensor heat from refrigeration plant
& why	'VERY EFFICIENT' 'CHEAP' 'EXPERIENCE SINCE 1950' NH₃ is standard application for THERMA INDUSTRI.
Timeframe 2009 idea Re-built & Extend? 2011 ∑9 wks	The project started in 2009. Followed by some budgetting time. Installation done in 2011 - building out old equipment : 1 week - building in completed after 8 weeks ! Start-up OCTOBER 2011.

MAYEKAWA Europe nv/sapoc.2012-368 R5a

Funding, partner : other organisation	YES NORWEGIAN ENERGY ORGANISATION ENOVA 900.000 NOK
	This new heat pumps save 1,6 GW fuel per year (approx. 210.000 liter). 'The funding is only valid on condition that savings were realised ! After 7 months of operation it was already visible that the 1,6 GW was going to be realised easily !'

natural refrigerants

COMPRESSORS	NH3 SCREW COMPRESSOR PACKAGES COMPLETE WITH OIL SYSTEM AND CONTROLS. Producing NH ₃ at 57°C (saturated condensing temp.) from NH ₃ heat source at 20°C (saturated evaporating temp.) to make hot water of 52°C. This hot water is than further heated by other equipment to 84°C and buffered in a 200.000 liter tank.	
MODULATING CONTROL VALVE	The suction pressure of the heat pumps is controlled at 7,5 barg (20° C), Representing an important saving of energy on the refrigeration plant : COPc 50% better at least -10/+35° C RT/BKW/COPc=353kW/105kW/3.36 -10/+20° C RT/BKW/COPc=381kW/ 73 kW/5.21. (256MW power saving on 8000hrs) Priority is given to the heat pumps, normally the external condensor is not active.	
	The screw compressors are equipped with frequency convertors which result in no reactive power, Saving 8.000 NOK monthly (or x12 = 96.000 NOK per year) The FC drive engines are more expensive but quickly paid back. 'this was a bonus')
		0

MAYEKAWA Europe nv/saDOC.2012-368 R5a

					DEN						
COMPRESSOR MODEL					SERIAL NU	IMB	ER			UNIT	
N170JM-L				1731	020				VP1		
N170	JM-L					1731	010				VP2
MAIN		VEN	νοτα	OR		250kW					
QUAI	NTITY	/					2				
PER MAG		_	HEA	inpu	Г	POWER INF	DUT	HEA	T OUTI	PUT	
Т	°C				20					52	
	kW		RT			BKW		QC			COP-h
RPM		3400 2950 1500			971 835 403		186 162 85			1157 997 488	6,2 6,2 5,7
RT BKW	°C kW kW kW	1300	absorb	rature ource capa ed motor utput capc	city powe	(heat input : NH3 r at shaft	3, heat	output	t : hot wat		3,1
RT BKW QC COP-h	kW kW		heat so absorb heat ou coeffici shaft re	ource capa ed motor utput capc ient of hea evolution p	city powe ity ating p per m	r at shaft performance inute	3, heat	output	t : hot wat	ter)	
T RT BKW QC COP-h RPM	kW kW kW	C	heat so absorbe heat ou coeffici shaft re	ource capa ed motor utput capc ient of hea	city power ity ating p per mi	r at shaft performance inute		output		ter) 10:13	3:53 AM 0 s
RT BKW QC COP-h	kW kW kW	C F	heat so absorbe heat ou coeffici shaft re	ource capa ed motor utput capc ient of hea evolution p	city power ity ating p per mi	r at shaft performance inute		Anti c		ter) 10:1:	3:53 AM
RT BKW QC COP-h	kW kW kW	C F	heat so absorb heat ou coeffici shaft re compre reque	ed motor utput capc ient of hea evolution p essor run ncy Max 100.01	city power ity ating p per mi anning dimur	r at shaft performance inute 9 m SPD:	2949	Anti d	:ycle:	ter) 10:1:	3:53 AM 0 s 342 H
RT BKW QC COP-h	kW kW kW	G F	heat so absorb heat ou coeffici shaft re compre reque	ed motor utput capc ient of hea evolution p essor run ncy Max 100.01	city power ity ating p per mi nning cimur	r at shaft performance inute 9 n SPD: 100.0 % Re	2949 emote	Anti d	:ycle:	10:13 78 100.0	3:53 AM 0 s 342 H
RT BKW QC COP-h	kW kW kW	C F I I	heat so absorb heat ou coeffici shaft re compre- reque CAP: Remot PS:	ed motor atput capo ient of hea evolution p essor run ncy Max 100.0 ° e Capa I	city power ity atting p oer mi nning cimur kimur % MV: BarG	r at shaft performance inute 9 m SPD: 100.0 % Re TS:	2949 emote 22.9	Anti o Rpm Freq	:ycle:) RH:), MV:	10:13 78 100.0	3:53 AM 0 s 342 H 0 % 6K
RT BKW QC COP-h	kW kW kW		heat so absorb heat ou coeffici shaft re compre- reque CAP: Remot PS: PD:	ed motor utput capo ient of hea evolution p essor run ncy Max 100.0 ° e Capa I 8.18 f	city power ity ating p per m nning cimur % MV: BarG BarG	r at shaft performance inute 9 m SPD: 100.0 % Re TS: TD:	2949 emote 22.9	Anti o Rpm Freq 9 °C 8 °C	ycle: RH: J. MV: SSH:	ter) 10:1: 78 100.0	3:53 AM 0 s 342 H 0 % 6K
RT BKW QC COP-h	kW kW kW	OF	heat so absorb heat ou coeffici shaft re iompre reque CAP: Remot PD: POH:	e Capa I 8.18 f 22.46 f	city power ity ating poer mining cimur % MV: BarG BarG BarG	r at shaft performance inute SPD: 100.0 % Re TS: TD: TD: TOH:	2949 emote 22.9 90.3 46.5	Anti o Rpm Freq 9 °C 8 °C 5 °C	ycle: RH: MV: SSH: DSH:	ter) 10:13 78 100.0 0. 34.	3:53 AM 0 s 342 H 0 % 6K

<u>ΜΑΥΕΚΔ</u> MAYEKAWA Europe nv/saDOC.2012-368 R5a

OPERATING HOURS 3-10-2012 : /P1:5155 hrs VP2:7842 hrs

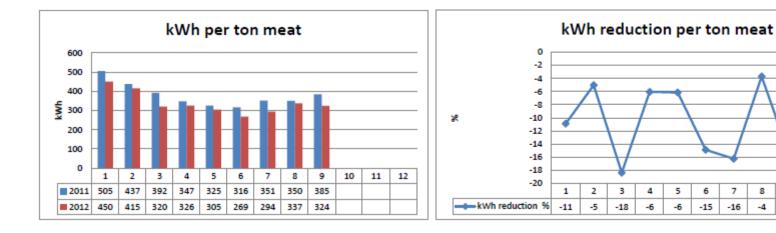
MAYEKAWA Europe nv/sa^{DOC.2012-368 R5a}

EFFICIENCY ANALYSIS

Difference planned & actual results if occured?	
If yes, why were there differences?	The design COP-h is in the range of 5.7 to 6.2 depending on the plant load. The average COP-h was at 5,5 for the first 11 months of operation. (Compared to classic boiler: saving of 85% input energy!)

	DESIGN WEEKLY mWh				
	HRS	276		12997 hrs in 11 months (47 wks)	
RPM	BKW	QC	COP-h		
3400	51	319	6,2		
2950	45	275	6,2		
1500	23	135	5,7		

MEASURED REAL OUTPUT/INPUT mWh						
	BKW	QC	COP-h			
MAY	35		5,4			
JAN	41,55	232	5,6			


MAYEKAWA Europe nv/sapoc.2012-368 R5a

EFFICIENCY ANALYSIS

Difference planned & actual results if occured?	
How is the process of measuring efficiency?	Total power input and heat pump output are checked weekly And taken up in the monthly energy cost per ton of meat which is the basic indicator for the process.

-16

-4

-16

COSTS INVOLVED	This installation represents a value of 3.500.000 NOK. Includes : NH₃ Heat pump installation Condensor Subcooler Waterpumps etc.	3.500.000 NOK	
FUNDING	ENOVA 900.000 NOK	-900.000 NOK	2.600.000 NOK
COST SAVING	1,6 GW fuel (210.000 liter equivalent 1.260.000 NOK)	1.260.000 NOK/yr	
	TC=20°C (up to 256 MW/yr or 201.000 NOK)	201.000 NOK/8000 hrs 96.000 NOK/yr	1.557.000 NOK/yr
	FC drivers (96.000 NOK/yr)		ROI =1,7 yr

Savings or potential savings because of existing or pending regulation

-heat recovery overcompression heat pump uses refrigeration plant heat rejected to the condensor, incl.oil cooler heat rejection

-high efficiency electrical motors IE2 motors are applied

-frequency controllers compressors and waterpumps

-energy-saving condensors

Potential savings in the future	Improvement is possible by increasing the ammonia condensing temperature from 57°C to 62°C, requiring a 30 bar safety valve setting on the heat pump unit. With the old heat exchangers drain water heat is recovered in the 45°C buffer. In the future this heat exchanger can be replaced with a more efficient execution.
Did forecast succeed/expectations were met?	<section-header></section-header>

MAYEKAWA Europe nv/sapoc.2012-368 R5a

BARRIERS & SOLUTIONS

WHAT BARRIERS WERE WE FACING WITH THIS PROJECT & HOW SOLVED ?	
Technical problems or availability of systems, components, engineers?	Thanks to the customer who gave full confidence and made strong investment in this new technology to Therma Industri it was possible to succeed and realise this plant with success !
Psychological barriers from customer:management?	Not as customer prefered NH₃ as natural refrigerant since long time and fully relied on the capability Therma Industri for the heat pump technology.
Safety problems, legilative barriers?	The plant/system was build fully in compliance with CE-PED.

LESSONS LEARNED

WHAT HAS BEEN LEARNED FROM THE PROJECT & HOW CAN THIS BE APPLIED TO OTHER PROJECTS USING NR.	
What will you do different in the future?	For the refrigeration/heating plant, the customer will go for the same solution as demonstrated by this field case !
What can you apply to the next project?	Higher safety valve set pressure to allow operation with higher water output temperatures.

IDEAS OF CONCRETE ACTIONS TO GET NATURAL REFRIGERANTS SOLUTIONS FOR EUROPE :	
1.1. What are the concrete actions already done?	Mayekawa only promotes natural refrigerants since the beginning of this century.
1.2. Or/and planning to do ?	
 2.1. what kind of actions needed to expand NR systems, for : Technology, Training, Safety, Policy, Standards, Regulation, 	Unlimited development ongoing. With each new product/system neccessary trainings are also made available. Suppliers of refrigeration accessories (EN378 qualified) should make more products available for high pressure/big size duty. Mayekawa still have too often to rely on expensive accessories designed for oil and gas industry.
Market, Costs,	
End-users.	

MAYEKAWA Europe nv/sadoc.2012-368 R5a

CONCLUSION

NATURAL REFRIGERANTS SOLUTIONS FOR EUROPE :

THIS PROVEN FIELD EXAMPLE SHOWS THAT THE SUCCESS OF THE NEW TECHNOLOGY IS MUCH DEPENDING ON THE QUALITY OF THE PREPARATIONS DONE ON BEFOREHAND FOLLOWED BY THE INSTALLATION AND COMMISIONING WITH OPTIMAL FINE TUNING, FROM COOPERATION BETWEEN ALL PARTIES INVOLVED :

MANUFACTURER : MAYEKAWA JAPAN/ MAYEKAWA EUROPE CONTRACTOR : THERMA INDUSTRI PLANT RESPONSABLE/OPERATORS.

THANKS FOR YOUR ATTENTION !

& much appreciated thanks to the Contractor of the fieldcases : THERMA INDUSTRI AS

NORWAY Mr.Stein Terje Brekke(<u>stein.brekke@therma.no</u>) Mr.Stein Johnsen (stein.johnsen@therma.no)

Copyright © 2012 shecco | All rights reserved.

WORLDWIDE
 35 countries / 122 offices
 8 production plants

SWITZERLAND Rosenbergstrasse 31, 8300 Zug TeL +41 41 728 8628 Fax+41 41 728 8620 http://www.mayakawa.ch E-mail.info@mayekawa.ch

SPAIN

Calle Montevideo 5, Nave 13 Pol. Industrial Camporroso 28609 Alcala da Henares, Madrid Tet. +34 91 630 0302 Fax +34 91 630 0302 Fax +34 91 630 0307 http://www.mayekawe.es

GERMANY

Munich Office Unter Bahrhotbtasse 38a, 82110 Germeing Tel, +40 89 5527 999 0 Fax+40 89 5527 999 19 Hemburg Office Weldestraße 122a, 22063 Hemburg Tel, +40 40 27880149 0 Fax, +49 40 27880149 9 E-mail Infoitimayekawa.de

FRANCE

East Branch Office 9, Ras Michael Faraday 78180 Montgry, La Bratonneux Tel, 433 1 30 55 29 00 Fax+33 1 30 55 19 37 Viest Branch Office 6, Sigure des Pruniers 22400 Lambale Tel, 433 2 98 75 59 13 Fax+33 1 30 55 19 37 E-mail mayekawa fance@mayekawa.eu

UNITED KINGDOM

16 Oakhurst Gardens DA7 5JP Bexteyheath, Kent TeL +44 1322 433559 Fax+44 1322 433164

RUSSUA House 3, Flat 54, Mytheya Bt. 1190-49 Moscow Tal. +7 499 230 01 78 Fex+7 499 230 21 12 http://www.mayekawa.ru E-mailino@mayekawa.ru

BULGARIA Kamen Andreev Str. 24, 1303 Softa Tel. +359 2 9910130 Fax +359 2 9910131

DUBAI P.O.Box 61349, LOB. 11. No.128 Jabel Zone, Dubal, U.A.E Tel. +971 4 857 2232 Fax+971 4 857 2239

NDIA Mayakawa India PVT, LTD, 309, Centrum Plaza, Golf Course Road Sector-53, Gurgoan Haryana Tel, +01 124 4208611 16 Fax +01 124 4208618

AUSTRALIA Unit 2,44 McCauley Street

NSW 2036 Matraville Tel. +61 2 9895 7000 Fax+61 2 9895 7001 http://www.mayskawa.com.au E-mail.mycomaus@mayskawa.com.au

NEW ZEALAND Unit 2, 30 Tul Street Otahuhu Auckland Tel. +68 9 276 2305

Tel. +68 9 276 2305 Fax+68 9 276 2306 E-mail info@mayekawa.co.nz TTALY Via Riccardo Lombardi 19/12 20153 Milano Tel. +39 2 45929216 Fax +39 2 4531726

TURKEY

Dunya Tioarat Markazi A/2 Biok Kat10 No:335 Yasilkoy Istanbul Tel. +90 212 465 38 31 34 Fax +90 212 465 38 35

JAPAN HEAD OFFICE 3-14-15 Botan Koto-ku Tokyo 135 6492, JAPAN Tal. 61 3 3642 6161 Fax 61 3 3643 7004 E-mail e-public@mayakawa.co.jp

MANEKAWA Europe newsa Leuvensesbarweg 805 1930 Zwentom - Belglum Tel.-32 2 757 90 75 Fax +32 3 757 90 23 http://www.mayekawa.eu E-mail.indofmayekawa.eu

DOC.2012-368 R5a