



# Transport refrigeration system using CO<sub>2</sub>



V4 - Bart Ezendam – 6 November 2012 Brussel





#### Agenda

- System description & operation
- Environmental benefits
- Other benefits
- Infrastructure
- Challenges
- Spar business case







### System Description & Operation

- Recycled liquid CO<sub>2</sub> through evaporator coil located inside load space
- Air around evaporator coil cooled and blown through box by electric evaporator fans
- Used CO<sub>2</sub> gas vented to atmosphere via exhaust muffler





# Environmental Benefits

- 100% of liquid CO<sub>2</sub> obtained as by-product from industrial fertilizer, bio-ethanol
  or chemical production
- In Europe, commercial CO<sub>2</sub> represents only ~0.1% of total man-made emissions
- Majority of carbon footprint for conventional systems due to fuel combustion
- Lower carbon footprint for liquefying and purifying
  CO<sub>2</sub> versus nitrogen or diesel driven equipment







#### **Other Benefits**



- Significant noise reduction
  - Exceeds requirements of Dutch PIEK noise standard
- Superior cooling capacity and temperature pull down
  - Four times faster pull down than equivalent conventional unit less spoilage





## CryoTech Infrastructure

- Developed in conjunction with Yara International
- Filling stations consist of:
  - Storage tank
  - High speed CO<sub>2</sub> dispenser
  - Breakaway couplings



- RFID based unit identification, billing system & fleet management system
- In operation: 26 stations in 7 countries supplying over 600 CryoTech installations
  - 7 stations in The Netherlands









## Challenges



#### Infrastructure for refilling CO<sub>2</sub>

Long distance transports requires a closed filling station network



- warmer climate regions require a more dense filling station network with subsequent higher initial investments
- Cooling capacity is unlimited
  - Due to higher ambient temperatures the CO<sub>2</sub>-consumption increases
- Each region & application requires a thorough cost-benefit calculation

#### There is no perfect refrigerant!







#### Spar business case

- In 2009 a test with 1 trailer worst case scenario
  → 40 kg of CO<sub>2</sub> per operational hour
- Goal: Secure Cold Chain (0-4°C)
- In 2011 go ahead for 51 CryoTech units on new fleet
- 2 DC's in the Netherlands: 1 new and 1 refurbished
- Small scale distribution: 677 stores to fulfil
- Approx. 4% market share in NL









### Spar business case

- Results in 2012
  - 9 kg of CO<sub>2</sub> per operational hour
  - 160.000 litre per year less Diesel
  - Reduction of CO<sub>2</sub> emissions: 417 ton per year
  - Extreme stabile temp. control regardless of ambient temp.
  - No rejections of cargo in nearly 1 year
  - Annual cost decrease of € 62.000





Conclusion

Temperature controlled supply chain under control Reduction of Emissions Lower operational costs







# Thank you for your attention!



