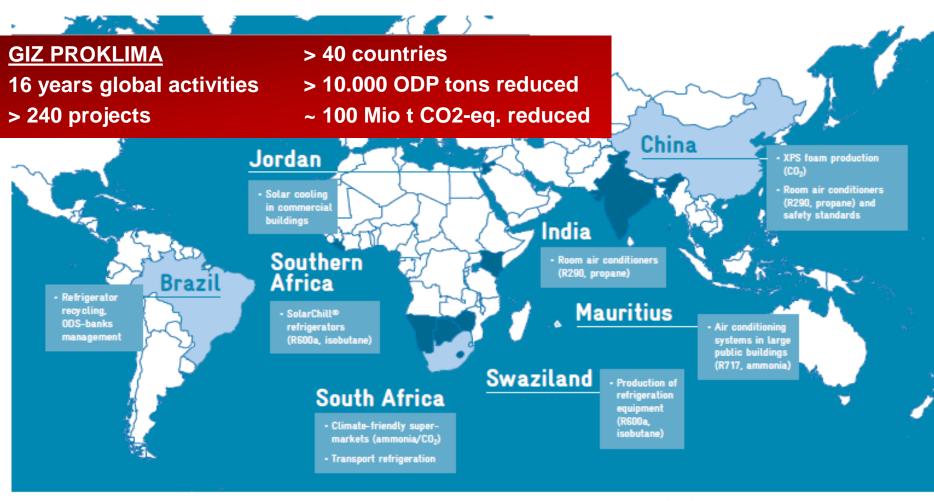


Demonstrating technology cooperation worldwide: Examples of green cooling in air-conditioning and refrigeration

Hydrocarbon (R290) Air-Conditioner by Godrej, India

Solar powered Vaccine Cooler, Fridge Factory Swaziland


Background: GIZ Proklima – Where do we come from?

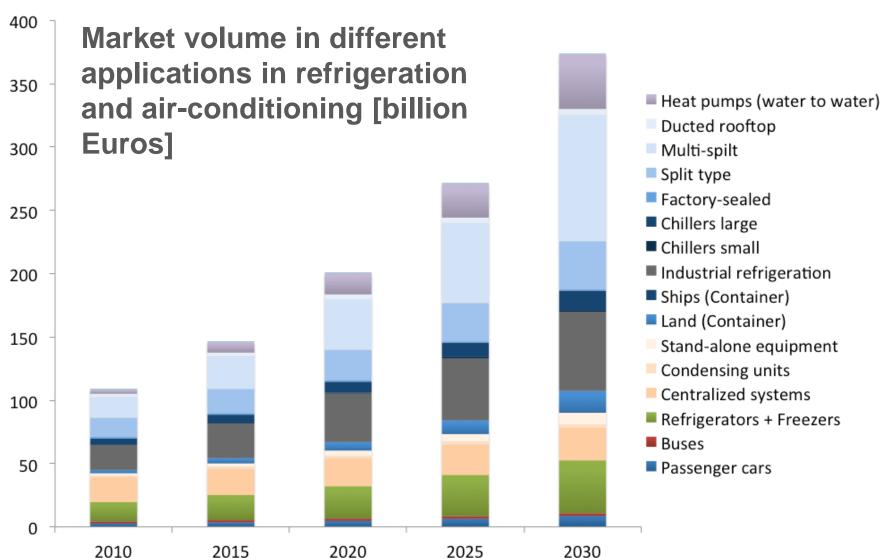
The need for innovation and exchange

Different forms of technology cooperation

Project Examples

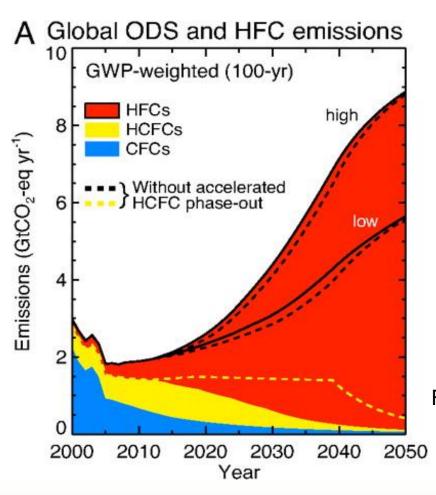
Background: GIZ Proklima - Where do we come from?

The need for innovation and exchange


Different forms of technology cooperation

Project Examples

Global relevance


- Ca. 15% of global energy consumption for cooling (7% growth/year until 2050) [IEA]
- Approx. 40% of energy consumption in urban areas for refrigeration and air conditioning
- Refrigerator and air conditioning unit are (next to light and tv) the top investments for poor families
- Up to 80% of energy costs of poor households come from the household refrigerator
- Proper insulation reduces 35-50% of energy loss

Predicted growth of HFCs without constraint

- 2050 > Developing countries become major consumer with a future share of over 70%
- Estimates of future HFC emissions range between 8 and 19% of the carbon emissions

Fuente: Velders, Guus J.M. et.al., 2009

On behalf of

and Nuclear Safety

Background: GIZ Proklima - Where do we come from?

The need for innovation and exchange

Different forms of technology cooperation

Project Examples

GIZ activities – Multi-level approach

Technology

Basic research

gíz

Applied R&D

gíz

Demonstration

giz

Market introduction

gíz

Market penetration

Policy development

Macro

R&D-Policy for climate-friendly technologies

Strategy development (e.g. for RE & EE)

Incentives, subsidies

e.g. reduced import customs, reduced taxes, tarifs

Meso

Cooperation with research institutes

Environmental standards

Techn. standards, norms, calibration and measuring system, quality control

Technology advise and information

Financing systems

Application of innovative technologies

Micro

Technology adaptation

Accompanying dissemination of new technologies

The technology challenge

Technology

Promote Natural Refrigerat Applications Technology transfer + partnerships

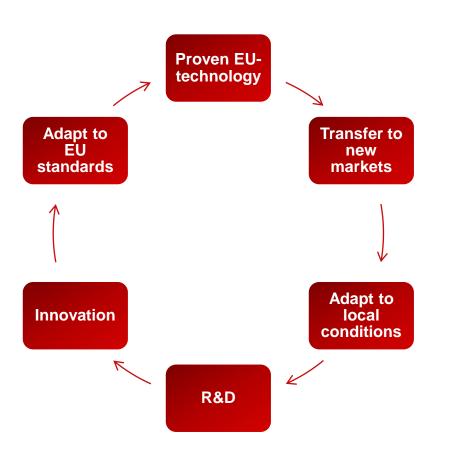
Safety

Make systems fully safe

Know How Transfer

Standards

Allow best climate solutions


International exchange of standards

The innovation cycle

- Promoting energy-efficient, ozoneand climate-friendly 'green cooling' policies and technologies
- Proving technical feasibility and economic viability of sustainable cooling technologies in emerging economies and developing countries
- Developing technology networks between industry, research and policy

German Green Cooling Initative – Global Technology Network

- Development of networks under the UNFCCC Technology Mechanism (Technology Executive Committee (TEC), Climate Technology Centre & Network (CTCN)
- Objectives:
- 1) mobilize technology providers and investors in Germany and the EU to participate in sector networks and joint initiatives with developing countries
- 2) create incentives for investments in climate-friendly cooling technologies
- Promoting a dialogue between stakeholders from industries, policy, research and non-governmental organizations (EU and non-Annex 1 countries)
- to encourage North–South, South–South and triangular partnerships on climate-friendly cooling technologies

Background: GIZ Proklima - Where do we come from?

The need for innovation and exchange

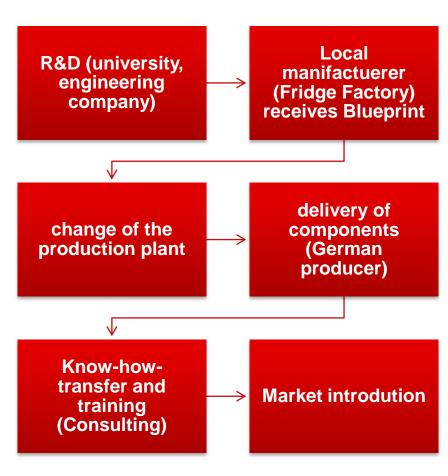
Different forms of technology cooperation

Project Examples

and Development

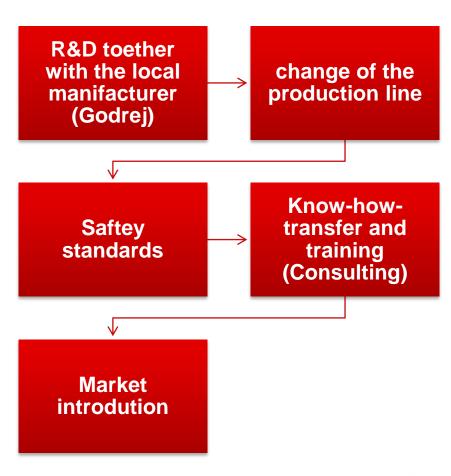
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) Gmbł

SolarchillTM – Content of the Project


- Preserve medicine food & beverages at high ambient temperatures (48°C)
- Using solar energy without the use of chemical storage batteries
- stable temperature for more than 72 hours even without power supply
- Excess energy is stored in a ballast load and is used during low light conditions
- Refrigerant 600a (isobutane)
- The new prototype is currently being tested by an EU Technical Inspection Agency
- Set-up of a production line at the local manufacturer in Swaziland
- Planned mass production in 2013

SolarchillTM - Process

Room air-conditioners using the natural refrigerant R290

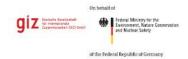

- Local manufacturer in India Godrej & Boyce Mfg. Co. Ltd
- Developed very high efficiency split AC model on propane (HC 290) basis
- Achieve Indian Bureau of Energy
 Efficiency (BEE) five-star (highest)
 rating (23%+ energy savings compared to top of the line products)
- India: Expected emissions reduction of annual production: 1 million tonnes of CO² equivalent
- Training of Trainers (by GIZ/Godrej) –
 March 2012
- Risk Analysis & Mitigation

290 A/C - Process

Thank you for your kind attention!

Contact: marion.geiss@giz.de

www.giz.de/proklima



Info and Training Material

- Natural Refrigerants, 2008
- Natural Foam Blowing Agents, 2009
- Overview for NOUs, 2011
- GREE HC AC appliance installation, commissioning and service manual, published in 2011
- Best practices in refrigeration (GIZ PROKLIMA, 2010)
- Conversion guidebook for split air-conditioning systems, 2011
- Conversion of the production of XPS Foam to climatefriendly blowing agents,2011

Operation of split air conditioning systems with hydrocarbon refrigerant A conversion guide for technicians, trainers and engineers.

Info and Training Material

- Guidelines on the safe use for HC refrigerants (GIZ Proklima and Tüv Süd), 2010
- Production conversion of domestic refrigerators from halogenated to hydrocarbon refrigerants, 2011
- Whitebooks with TÜV: Conversion of the production line of airconditioners to R290, 2011
- More currently under development

Download from <u>www.giz.de/proklima</u>

Production conversion of domestic refrigerators from halogenated to hydrocarbon refrigerants

A Guideline

On behalf of

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Movies about PROKLIMA projects

- Environmental friendly air-conditioning in India: http://www.dw.de/eco-friendly-cooling/a-16036590-1
- Green refrigerators in Swaziland: http://www.dw.de/green-refrigerators-in-swaziland/a-5609664-1
- Recyling refrigerators in Brazil: http://www.dw.de/recyling-refrigerators-in-brazil/a-14749211-1
- Green supermarkets in South Africa:
 http://www.dw.de/cape-towns-greener-grocer/a-5978571-1

On behalf of

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety