

Market trends & developments for CO₂ in Commercial Refrigeration in Europe

ATMOsphere Europe 2012 Conference, Brussels

Speakers: Christoph Brouwers / Lothar Serwas

Solutions for Europe natural refrigerants

Climate | Controls | Security

AGENDA

CO₂ projects & systems evolution at Carrier Commercial Refrigeration

CO₂ high-efficiency solutions for warmer climates

Integrated systems, managing thermal energy flows of buildings

CO₂ IN COMMERCIAL REFRIGERATION

Project & systems evolution at Carrier

CO₂ IN COMMERCIAL REFRIGERATION

Project & systems evolution at Carrier

CO₂ IN COMMERCIAL REFRIGERATION

Project & systems evolution at Carrier

CO₂ HIGH EFFICIENCY

Viable solutions of increasing transcritical CO₂ system efficiencies in warmer climates

Source: http://en.wikipedia.org/wiki/File:Annual_Average_Temperature_Map.jpg#filelinks

Demonstrable market acceptance of CO_2 DX systems:

Attractive energy performance at average annual temperatures up to +15 °C in line with EPEE statement and energy data recording

CO₂ DX systems next generation:

Different technology options showing the path to achieve attractive energy performance across whole Europe

COOLtec

POTENTIAL SOLUTIONS

FACTORS FOR EVALUATION

Efficiency

Potential of efficiency improvement

Safety & reliability

Reliable and safe operation are mandatory

Environmental impact

Low GWP of refrigerant used combined with high efficiency ensures best TEWI

Modularity

Easy integration into existing design

Total life cycle cost

tec

Initial investment, energy & service costs

ECONOMIZER (PARALLEL COMPRESSION)

Conventional 2-stage cycle, various implementations exist

Advantages:

- Known technology
- No new components
- No fundamental change of CO₂ booster concept

Disadvantages:

- Part load operation
- Oil return

Efficiency potential lower than other solutions

Mechanical work extraction from expansion process

Advantages:

Theoretically high efficiency potential

Disadvantages:

- New technical territory
- Part load operation
- Oil return
- Expander work demand/supply management
- Reliability (moving parts, design)

EJECTOR

"Fluid-dynamic" work extraction from expansion process

Advantages:

High efficiency potential

- Few new moving parts
- Few additional parts in system

Ejector (theoretically) similar to expansion valve

Disadvantages:

- New technical territory
- Part load operation
- Oil return

.tec

Reliability (compressor may run outside operating envelope)

MECHANICAL SUBCOOLER

External chiller / CDU cools CO₂ after gas cooler below ambient temperature

Advantages:

- Option to use hydrocarbon refrigerant for
- "all natural" solution
- Known technology
- No new components
- High efficiency potential
- Potential of space heating & cooling implementation

Disadvantages:

tec

- Additional space required for installation
- Individual customers may not accept hydrocarbon refrigerant

PERFORMANCE COMPARISON

Performance comparison

Simulations and tests conducted at Carrier laboratories to assess efficiency

Current status

COOLtec

Mechanical subcooler offers the greatest potential, based on components available today

Ongoing research at Carrier

Aim to improve all solutions to fulfill expectations for highest quality standards and superior performance

VIABLE SOLUTIONS – WHAT TO CHOOSE?

One solution might not fit all

Further to laboratory tests and simulations. Carrier conducts field tests on selected solutions

Outlook

COOLtec

To develop a set of standard solutions based on customer input, field experience and upcoming EU regulations

INTEGRATED SYSTEMS

Managing thermal energy flows of buildings

Total thermal supply from one system **avoiding use of fossil fuels**

Range of modular system components & dynamic controls architecture constitute key elements

Summer operation Winter operation

 space cooling
 refrigeration
 space heating

 domestic hot water
 comfort "cold aisle" heating
 Image: comfort "cold aisle" heating

INTEGRATED SYSTEMS

Managing thermal energy flows of buildings

* Energy Costs Electricity and Fossil Fuels (Gas)

3% 100% - 6% cost thermal [%] 90% cost electric [%] 80% - 33% 70% - 35% 60% 50% 40% 30% 20% 10% 0% HybridCO₂OL[®] CO₂OLtec[®] HybridCO₂OL[®] CO₂OLtec[®] R404A With gas heating Integral

(typical hypermarket project; 0,15 €/kWh electric; 0,08 €/kWh thermal)

INTEGRATED SYSTEMS

Managing thermal energy flows of buildings

*Equivalent CO₂ Emissions

(typical hypermarket project; avrg.leakage rate 10%/a; emission factor el. 0,477 kg CO2/ kWh (weighted average EMEA); emission factor th. 0,25 kg/kWh)

Thank you for your attention!

Innovative solutions, naturally...

Carrier has the right refrigerant for every application, but every application will not have the same refrigerant solution.