

CO₂ refrigeration in warm climates

Efficiency improvement

Enex srl

MORE THAN 300 UNITS PRODUCED — ${\rm CO_2}$ AS THE ONLY REFRIGERANT - INSTALLED IN 15 COUNTRIES

REFRIGERATION CONCEPTS:

- SINGLE STAGE
- 2-STAGE SIMPLE INTERCOOLER AND OPEN FLASH TANK
- BOOSTER
- CASCADE
- HEAT PUMPS: TAP WATER HEATING (WATER/WATER AND AIR/WATER)

Evolution of CO₂ refrigeration

PERIOD	PHASE	DESIGN SOLUTION	COUNTRY
1994 -1997 1998 1999	From idea to prototypes	First installation cascade First installation of a refrigeration transcritical system	
2000 -2004	Pioneer installations	Multicompressor 1 stage Multicompressor 2 stage with intercooler	Italy Switzerland Northern Europe
2005 -2009	CO ₂ only solution becomes widly accepted. Optimized components available	- Economizer - Booster - 2 stage Open Flash Tank	Northern Europe United Kingdom Switzerland
2010 -2012	Focus on reliability	No new design solutions	Pilots plants in central/southern Europe
2013 - ?	Search for Resilience/Reliability/Efficiency Improved design?	Expansion work recovery?	All Europe?

Today

- A) CO₂ ESTABLISHED ALTERNATIVE TO HFCs IN COMMERCIAL REFRIGERATION
- B) MORE THAN 1300 SUPERMARKETS INSTALLED IN EUROPE*
- C) STILL LIMITED TO NORTH AND MID EUROPE
 - * Shecco, 2012, Study on supermarket refrigeration system with transcritical R744 units

Needs

- 1. MOVE SOUTH THE APPLICATION BORDER-MAKE THE USE OF CO₂ SYSTEMS CONVENIENT IN WARMER CLIMATES
- 2. IMPROVE OVERALL EFFICIENCY OF CO₂ PLANTS
- 3. MAKE CO₂ ECONOMICALLY COMPETITIVE THROUGH MASS PRODUCTION ALLOWED BY A MUCH LARGER MARKET

Development Objectives

- A) REFRIGERATION SYSTEM WITH CO₂ AS THE ONLY REFRIGERANT
- B) HIGHER EFFICIENCY THAN CO₂ STATE-OF-THE-ART SYSTEMS
- C) SIMPLE DESIGN
- D) SUITABLE FOR WARM CLIMATES
- E) COST EFFECTIVE, SUITABLE ALSO FOR SMALL SHOPS / PETROL STATIONS/HORECA

Identified solutions - COJECTOR®

- 1. EVAPORATORS OVERFEEDING (REDUCTION OF LOSSES FOR SUPERHEAT-HIGHER EVAPORATION TEMPERATURE)
- RECOMPRESSION OF FLASH VAPOR AND PRECOMPRESSION WITH EJECTOR (REDUCTION OF THROTTLING LOSSES)

Evaporators temperature profile

SUPERHEAT EVAPORATOR (THERMOSTATIC EXPANSION VALVE)

- DRY EXPANSION

FLOODED EVAPORATOR (OVERFEEDING)

- NO SUPERHEAT CONTROL
- EXCESS LIQUID MANAGEMENT IS REQUIRED

Overfed evaporators: system design

Overfed evaporator with ejector liquid suction: test results

Overfed evaporators advantages

COMPARED WITH "OLD GENERATION CO₂" THE NEW DESIGN IS CHARACTERIZED BY:

- INCREASE OF EVAPORATING TEMPERATURE IN TYPICAL COMMERCIAL CABINET FROM 3 TO 5K, DEPENDING ON REFRIGERATION LOAD AND EVAPORATOR DESIGN
- ENERGY SAVING 10-12% IN ALL CLIMATIC CONDITIONS DUE TO LOWER COMPRESSION WORK
- SIMPLE EVAPORATOR CONTROL
- INCREASED RELIABILITY: NO RISK OF LIQUID AND OIL SLUGS SUCTION FROM COMPRESSORS/LESS COMPONENTS
- LOWER TOTAL COST (SIMPLER EVAPORATOR CONTROLS, SMALLER COMPRESSOR, REDUCED SIZE OF ELECTRICAL EQUIPMENT)

Reduction of Throttling losses: flash vapour recompression

RECOMPRESSION OF FLASH VAPOR FROM RECEIVER AT INTERMEDIATE PRESSURE (OFT) SUBCOOLING WITH AUXILIARY COMPRESSOR(S)

Flash vapour recompression

- FIELD TEST ON 2 SYSTEMS (ITALY) —ONE YEAR DATA COLLECTION FROM THE FIELD (JUNE 2011-JULY 2012)
- EXPERIENCE FROM THE FIELD:
 - ENERGY SAVING DEPENDS ON EXTERNAL CONDITIONS (AIR COOLED SYSTEMS), IT BECOMES RELEVANT FOR AIR TEMPERATURES HIGHER THAN 25° C
 - PAY BACK CAN BE TOO LONG IN MEDIUM CLIMATIC CONDITIONS (THE AUXILIARY SYSTEM IS SELDOM IN OPERATION)
 - CAPACITY CONTROL IS A CRITICAL ISSUE FOR OBTAINING EFFICIENCY IMPROVEMENT
 - DESIGN WITH SUBCOOLING HEAT EXCHANGER:
 - a) THEORETICALLY MORE FLEXIBLE, BUT HX DESIGN IS CRITICAL
 - b) ADDITIONAL ΔT ON HX REDUCES THE ADVANTAGE OVER THE OFT DESIGN
 - c) MORE COMPLEX IN CONTROL

ENEX OPTION IS "FLASH VAPOUR RECOMPRESSION FROM INTERMEDIATE RECEIVER":

- SIMPLER DESIGN AND CONTROL
- COMPATIBILITY WITH EJECTOR PRE-COMPRESSION

Reduction of Throttling losses -3

- a) THE SIMPLE ADD-ON OF ONE OR MORE EJECTORS EXTEND THE PERIOD OF USE OF AUXILIARY COMPRESSOR(S) REDUCING PAY BACK
- b) EFFICIENCY INCREASE UP TO 20% AT PEAK CONDITIONS

How the ejector looks

Overall results

- ENERGY GAIN DEPENDS STRONGLY ON DESIGN AND CONTROL
- CAREFUL BALANCE OF COST/BENEFITS IS NEEDED
- WHAT CAN BE EXPECTED IN TERMS OF ENERGY SAVING?

	1000
	YEARLY AVERAGE
A: EVAPORATOR OVERFEEDING	10-12%
B: FLASH RECOMPRESSION *	8-10%
C: FLASH RECOMPRESSION + EJECTOR *	15-18%
A+C	20-22%

^(*) REFERRED TO ITALIAN CLIMATE

Further development/possibilities

THE POSSIBILITY OF REFRIGERANT CHARGE TRANSFER MAY INCREASE SAFETY LEVEL IN SUPERMARKETS

- a) IT IS POSSIBLE TO LIMIT THE LIQUID CHARGE LEVEL IN RECEIVER
- b) POSSIBLE REDUCTION
 OF LIQUID CHARGE
 DUE TO REDUCTION OF
 LIQUID PIPING
 DIAMETER (PRESSURE
 DROP IS NOT AS
 CRITICAL AS WITH A
 CLOSE SUPERHEAT
 CONTROL)
- a)+b) -> SIGNIFICANT REDUCTION OF CO₂ MASS IN SALES AREA OF A SUPERMARKET

Conclusions

- a) COMMERCIALLY AVAILABLE OVERFEEDING SYSTEMS AND FLASH RECOMPRESSION
- b) "OVERFED" DESIGN VERY COST EFFECTIVE AND SIGNIFICANTLY SIMPLER THAN A CONVENTIONAL DRY-EX
- c) EJECTOR PRECOMPRESSION REDUCES PAYBACK AND INCREASES EFFICIENCY OF THE SIMPLE FLASH VAPOR RECOMPRESSION
- d) PRESENTED TWO PRACTICAL SOLUTIONS AVAILABLE TODAY FOR CONVENIENT USE OF CO₂ ONLY SYSTEMS IN SOUTHERN EUROPE CLIMATE
- e) OPENING TO FURTHER IMPROVEMENT POSSIBILITIES, ESPECIALLY REGARDING SAFETY FOR PUBLIC

