

Refrigeration and Heat Recovery with CO2 in Food Retail stores

Agenda

- What about Green
- Basic needs
- Heat Recovery Concept
- \blacksquare Why CO₂ is the best
- Case Heat Recovery
 - COSP and COP
 - TEWI
 - COST
- Conclusion

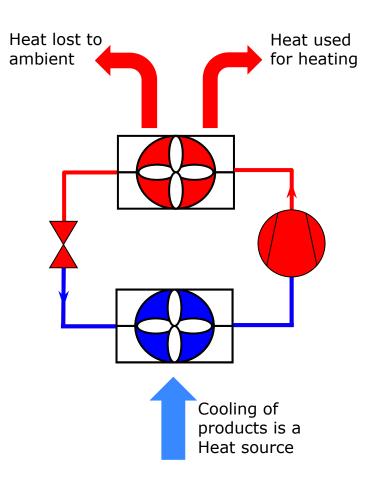
What about Green

Everyone wants

- Low Emission
- High Efficiency

But a good business case is needed!

The good thing is that it is possible with CO2 as refrigerant!



Food Retail Basic Needs

All above needs to be addresed in Economical and Environmental benign solutions.

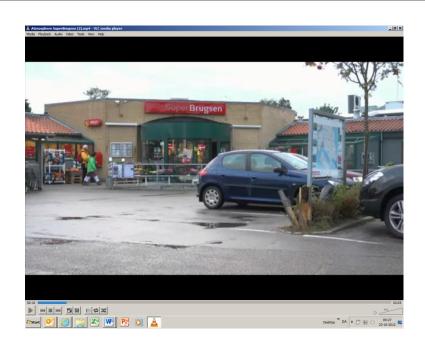
Heat Recovery Concept

Utilise the fact that cooling creates heat!

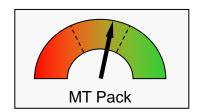
$$COSP = \frac{Q_{Cool} + \sum Q_{Heat}}{W_{Compr}}$$

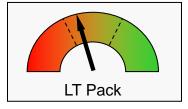
COSP: Coefficient of System Performance

- Design a system where the discharge gas is utilised to serve heating needs
 - Select the most suitable refrigerant
 - Ensure Cooling obligations
 - Optimise COSP

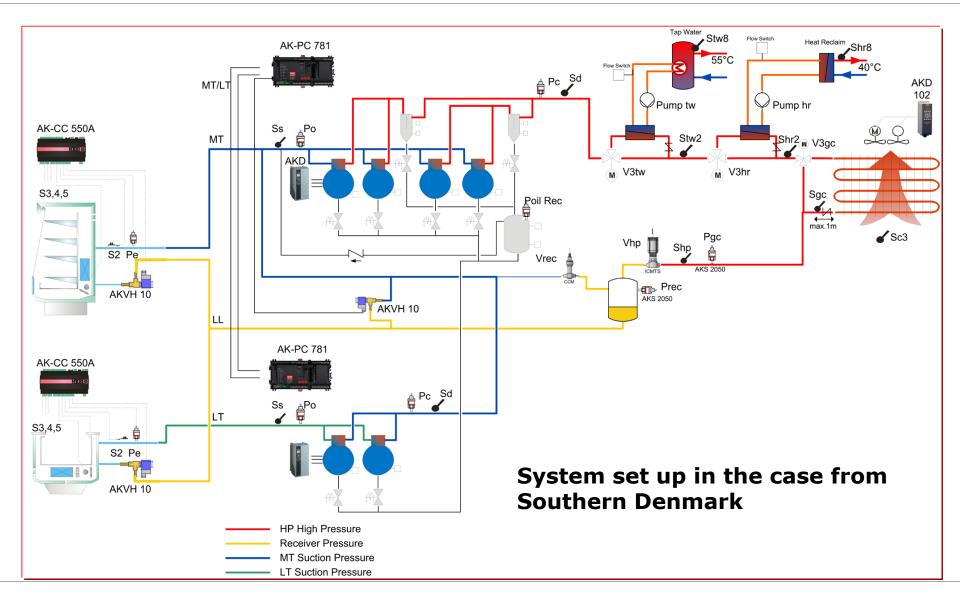

100° C 55° C 25° C 5°C Whr2 Wac2 80 Bar 40 Bar -10° C Wchr Qo: Refrigeration load Wc: Compressor work Whr: Heat that can be reclaimed (55° down to 25°C) Wgc: Heat rejected by the gas cooler (25 down to 5°C)

The high pressure has been increased to 80 bar (transcritical condition).


Why CO₂?

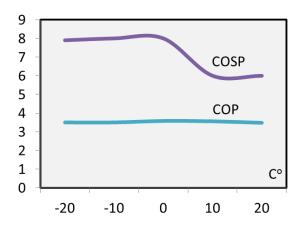

- Mature status as refrigerant for refrigeration – more than 2000 systems running in the EU
- Temperature regulation within large temperature band of discharge gas
- Efficiency less dependent on discharge temperature
- Efficiency most dependent on return water temperature
- Transcritical phase invites for high efficient counter flow heat exchangers

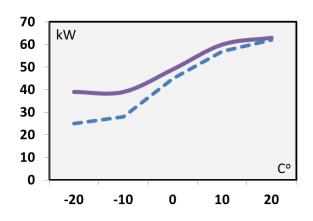
Performance of refrigeration system (COP)


Heat Reclaim Case

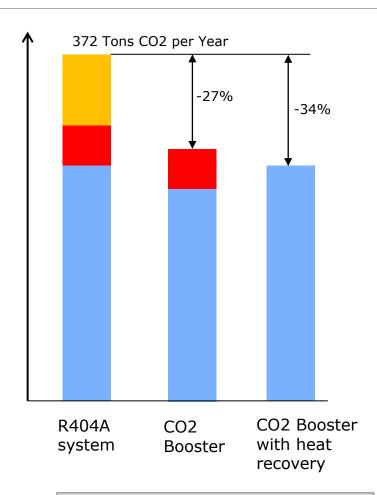
- Høruphav, Southern Denmark
- Area: 1000 m² from 2010
- Compressors: 5 MT (1 VS), 4 LT
- Cooling Capacity: 160 kW
- Online COP calculation

Heating:


- Sanitary water (1800 I tank (65 °C)
- Floor heating/low temp coils (45 °C)
- Heating investments (add on) is less than 7000 €



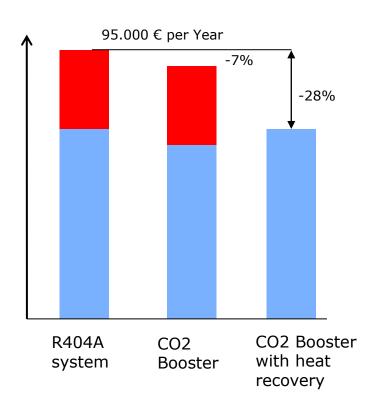
COSP and COP vs. Ambient Temperature


Compressor load vs. Ambient Temperature

Case results

- COP is nearly constant
- COSP can get as high as 8 during the cold periods
- Former natural gas heating has been 100 % substituted without loosing comfort
- Pay back on heat recovery has shown to be less than 5 months

Electricity: ½ kg CO2/kWH


Gas: 2 kg CO2 / M3 Leakage rate 10%

Charge: 200kg R404A (GWP =3922)

Case: TEWI comparison between systems

- CO2 is an excellent Heating server.
 Obtainable temperature levels can eliminate heating sources like gas
- Heat recovery will increase compressor power consumption by cose to 10 % due to temporary peak heating tasks
- TEWI decreases significantly using CO2 and heat recovery. More than 30 % improvements was achieved compared to a conventional system with high direct emission
- Minor TEWI decrease based on heat recovery alone

Electricity : 0,14 € / kWh Gas : 1,40 € / m³

Case: Energy running cost comparison between systems

- The CO2 booster system with heat recovery decreases overall energy cost with more than 20 %
- Savings in running costs for topping up on refrigerants leaks are not considered
- The CO2 system with Heat recovery increases Electricity cost up to 10% compared to systems without heat recovery.

Conclusion

- Supermarket applications are very suitable for improving overall system performance of CO2 systems using heat recovery
- The traditional CO2 weaknesses as high temperatures and pressures is turned into advantages using heat recovery
- TEWI can be reduced by 5-10 % using heat recovery
- Running cost can be reduced by more than 20% by introducing heat recovery and removing conventional heating sources
- Pay back has been proven to be very short on excess investments

MAKING MODERN LIVING POSSIBLE