Natural Alternatives in the Refrigeration & Air Conditioning Sectors

Mark W. Roberts
Senior Counsel & International Policy Advisor
Environmental Investigation Agency

Available Alternatives US Slowly Catching Up With EU

*** CO2**

- * GWP of 1
- * Used as a refrigerant, a foam blowing agent and a fire extinguishing gas

* Ammonia

- * GWP of o
- * Has been used as a refrigerant for 125 years
- * Water

* Hydrocarbons

- * GWP of less than 20
- * Can be used as refrigerants (limited), foam blowing agents, and aerosol propellants
- * Not-in-Kind

Commercialized alternatives are currently available across the refrigeration, foam, and air conditioning sectors

Sector	Examples of Alternatives	Use of Alternatives in Sector		
		Industri al ized Countri es	Developing Countries	Global Total
Industrial refrigeration systems (a)	Ammonia, CO2, HC	92%	40%	65%
Industrial air conditioning systems (a)	Ammonia, CO2, HC	40%	15%	~ 25%
Domestic refrigerators (vapor				
compression cycle) (b)	HC	51%	22%	36%
Foam in domestic refrigerators (c)	нс	66%	68%	67%
Foam in other appliances (c)	нс	38%	< 1%	28%
Polyure thane foam boards and panels (c)	нс	82%	21%	76%
Fire protection systems (d)	Water, foams, dry chemicals, inert gases	_	_	75%
Asthma medication (e)	Dry powder inhalers	-	-	~ 33%
Solvents (f)	Aqueous, no-clean, alcohols, others	> 90%	> 80%	> 80%

Sources: FTOC 2010; RTOC 2010; TEAP 2009ab; TEAP 2010a.

The percentages in this table refer to: (a) refrigerants used in new installations annually; (b) annual production of new equipment;

(c) annual consumption of blowing agents; (d) usage or market; (e) annual medical doses; (f) market penetration in solvent applications.

Commercial Refrigeration

- * Self Contained Units: Propane, isobutene, hydrocarbon blends and CO2
- * Condensing Units: CO2 (EU and Japan)
- * Rack Systems: CO2, glycol, trans-critical CO2 and cascade systems with CO2 and ammonia
- * Central plants: ammonia and ammonia/CO2, water distributed system using HCs or CO2
- * Packaged systems: ammonia and CO2 work but increase costs at present, can be replaced by rack or central plant systems
- * Refrigerated Transport Systems: CO2 and hydrocarbons (EU)

Self Contained Units Case Study: Ben & Jerry's Hydrocarbon Freezers

- * In 2011, 70% of their freezers worldwide used Hydrocarbons instead of HFCs
- * These units are 10% more energy efficient
- * Unilever and Ben Jerry's announced plans in 2012 to only purchase hydrocarbon freezers for the US market

Rack System Case Studies: Cascade Systems

- * <u>Supervalu's CO2 and Ammonia Cascade</u> <u>System</u>: Carpinteria, Ca Albertson
 - * an ammonia primary system
 - * a CO2 medium temperature cascade to a DX system on the low temperature side
 - * Only 250lbs of ammonia are needed, which is located in an outdoor enclosure
- * Ammonia/CO2 Cascade Refrigeration
 System at a Defense Commissary Agency
 Project
 - * 8-25% energy savings
 - * The ammonia is separated into 10lb modules, to make them safe for highly populated areas

Rack System Case Studies: CO2 Transcritical Systems

* Overwaitea

- * Uses a Hill PHOENIX Advansor transcritical CO2 booster refrigeration system
- * CO2 is cheaper than HFC: \$2/lb compared to \$20/lb

* Carrefour

- * Installed first CO2 transcritical unit in Istanbul, Turkey
- * The new refrigeration installation will reduce the stores energy bills by 7%

Case Study: Waitrose Installs Water & Propane Refrigeration system

- * The installations comprise of integral cabinets and close coupled cold room systems
- * The total on site HC charge is less than 100 kg, 100 kg in the chillers outside & >1kg charge inside the building
- * According to Waitrose, the propane based fridges:
 - * Cut its carbon footprint by 15%
 - * Cut energy costs by 20%
 - * Cut servicing and maintenance costs by at least 50%

Industrial Refrigeration Case Study: Unilever Factory, the Netherlands

- * Uses ammonia condenser heat pumps
 - * Utilizes heat recovery and water heating by means of an additional heat pump
- * Replacing the 3.2 MW HCFC-22 refrigeration system resulted in 40% reduction of energy consumption
- * The total annual cost savings are more than £1.4 million, resulting in a payback time of 2.7 years

Industrial Refrigeration Case Study: Wal-mart Canada

- * 400,000 sq ft distribution center in Alberta, Canada that serves 104 Wal-Mart stores
- * Using ammonia has resulted in a 33% energy efficiency increase
- * Will avoid \$2 million in energy costs over five years

Alternatives are Already Scaled Up

- * **AEON:** "The company will introduce CO2 refrigeration systems into 10% of all new stores in fiscal 2012, 15% in fiscal 2013 and 25% in fiscal 2014. From fiscal 2015 the company will install these greener machines in all new stores."
- * Sainsbury: delivered 100 CO₂stores by March 2012 and is on target to double its CO₂store to 250 by 2014
- * **Sobey's:** 34 transcritical CO2 system installations, with 22 more approved for 2013.
- * **Tesco:** Converted 46 stores to CO₂ in one year
- * Waitrose: Has 67 HFC-free stores

Domestic Refrigeration

GE Monogram HFC free refrigerator

- Between 80 & 90% of all domestic refrigerators and freezers in the EU already use hydrocarbon technologies.
- * It is predicted that at least 75 percent of global new refrigerator production will use hydrocarbon refrigerants in 10 years. TEAP Report, 2010
- * There are over 600 million hydrocarbon, or GreenFreeze, refrigerators in the world today
- * Isobutane is the standard refrigerant for European refrigerators
- * Hydrocarbon refrigerators are at least 10% more energy efficient

Air Conditioning Sector

- Ammonia and hydrocarbon chillers are already on the market, with increased energy efficiency of about 10% in small hydrocarbon chillers to 20% for small ammonia chillers
- * CO2 is expected to have the same energy efficiency in moderate and 10% lower energy efficiency in warm climates
- * For large centrifugal chillers, water as refrigerant is an environmentally benign solution, with 5-10% better energy efficiency
- * International space station

Commercial Air-conditioning Case Study: Heathrow Airport Terminal 5

- * Four systems:
 - * cooling capacity of 6.6 MW each
 - * Ammonia charge of 1,300 kg each
- * The facility incorporates a chilled water storage system to minimize the installed chiller capacity through a 'peak lopping' strategy
- * It also utilizes "free cooling" by capturing and storing night-time and low ambient temperature cooling opportunities.

Domestic Air conditioning Case Study: Benson A/C Systems

- * Australian company manufacturing propane air conditioning units, both wall split and ducted split models
- * The capacity of the wall split units range from 2.4kW to 12.5kW, with the charge size ranging from 0.2kg to around 1kg
- * The ducted split model capacity ranges from 3.5kW to 100kW
- * All units have 15-20% better energy efficiency than HFC units

Questions?

122 Kirkland Drive Stow, Massachusetts 01775

Tel: +1.978.298.5705

Cell: +1.617.722.8222

markroberts@eia-global.org

Mark W. Roberts
Senior Counsel and International Policy Adviser
The Environmental Investigation Agency