NO REFRIGERANT IS GOOD LESS IS MORE

ERAS OF REFRIGERATION

- Before 1930's Ammonia absorbers, and various refrigerants-mostly secondary (brine)
- After WWII, Ammonia liquid overfeed recirculation
 - Efficient but large charges; flooded evaporators

- Now and Forward Ammonia small charge
 - 1) Ammonia / CO₂
 - 2) Improved direct expansion
 - 3) Desiccant
 - 4) Low pressure receiver Charges down to 1 lb/ton

Public Refrigerated Warehouse

- About 80% of the country's Refrigerated Warehouse space
- 92-95% Ammonia, almost all liquid recirculation with
 - Large charge 10,000 lbs plus
- All PRWs in New Jersey use R22 operating engineers requirements – union pressure in the 1920's
- We replaced ammonia with R22 in the mid 90's
- Misguided regulation determines the refrigerant– look at New Jersey, Northern Europe and Southern Europe – Not rational decision making

National Regulatory Climate

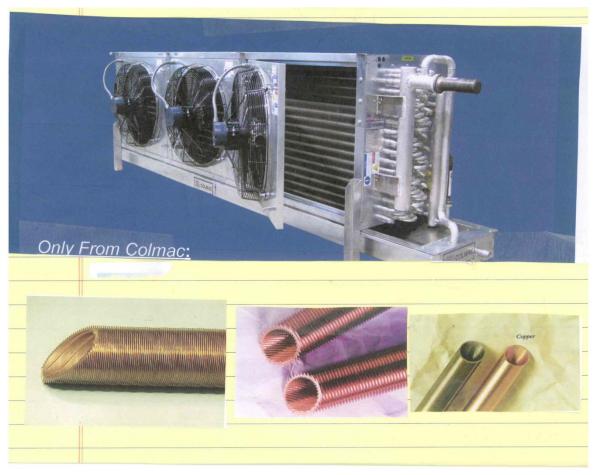
- Last 4 years excess ammonia regulation has been brutal
- Only solution very small charges
- Investment required, return is fewer operating engineers, lower regulatory and insurance costs

Performance of Refrigerants

Refrigerant COP	%	Net Refrigerant Effect BTU/lb	Refrigerant circulated) (lbs/min
Ammonia 4.76	100	474	.12
R22 4.66	98	70	.81
CO ₂ 2.69	56	57	.51
Propane 4.50	95	120	.47
R507 4.18	88	47	.47

Difficulties with CO2

- Will not condense above 88°F; need cascade
- ▶ Will freeze at -70°F
- Low COP, 49% less than ammonia Difficulties with R22
- Average leak rate 35%
- Price to replace \$23/lb
- A pound of R22 does much less refrigerating than ammonia
- Production banned in 2020, limited by EPA now


Difficulties with R507

- Will get banned
- ▶ 12% lower COP than ammonia
- Leaks more than R22 and costs more Ammonia is the best industrial refrigerant

Difficulties with Ammonia

- Low density at low temperatures required compressor displacement is 7 X CO₂
- ▶ 10,000 lbs (5,000 lbs in some states) requires PSM and RMP
- Refrigeration expertise needed for large central systems.

New Direct Expansion Evaporators

Small charge system – improved evaporators Dx not recirculation

Best Solutions - Warehouses

- Small charge ammonia systems (1 to 7 lbs/ton)
- Roof top mounted, factory fabricated and manufactured system 40' - 140' in the air.
 Virtually no exposure to people or product
- As energy efficient as liquid recirculation with virtually no refrigeration engineers