EU Sphere natural refrigerants

15-16 October 2013, Brussels

Improving efficiency for small transcritical CO₂ supermarket installations

by Christian Heerup

ENERGY AND CLIMATE **REFRIGERATION AND HEAT PUMP TECHNOLOGY**

Project Partners ESO2

The Danish Energy Agency (funding via the EUDP program) Advansor COOP Danfoss DTI (project management) **DTU** Informatics DTU Mech. Eng. IPU SuperGros Super Køl

ESO2 Optimization of super market refrigeration systems, main objectives:

- Measure actual refrigeration capacity needed on the cabinets and identify saving potential
- Software for diagnosing energy performance of plant
- Compare mass flow measuring methods direct/ indirect
- Software tool for sizing compressors and estimating load profile
- Optimized energy performance by coordinating/ overriding local controllers as an add on for the present control system

ENERGY AND CLIMATE REFRIGERATION AND HEAT PUMP TECHNOLOGY

Fakta Reference Installations

4

REFRIGERATION AND HEAT PUMP TECHNOLOGY

© Copyright Danish Technological Institute

CO₂ Booster Pack

MT 30 kW

- 7 evaporators
- 2 compressors (1 inverter)
- LT 8 kW
 - 4 evaporators
 - 2 compressors
- Danfoss AdapKool
- + Energy meters for compressors
- + Pos 1 vortex flow meter
- + Pos 2, 3 and 4 coriolis mass flow meters

ENERGY AND CLIMATE REFRIGERATION AND HEAT PUMP TECHNOLOGY

Apparent energy saving potential Suction and headpressure unchanged Energy consumption measured/ calculated with PCII

> 35% 30% 25% Difference [%] 20% MT reduc 15% LT reduc 10% 5% 0% jul okt jan maj jun aug sep nov dec

> > 7

DANISH

TECHNOLOGICAL INSTITUTE

1

ENERGY AND CLIMATE REFRIGERATION AND HEAT PUMP TECHNOLOGY

Overriding control algorithm Preliminary test results

	Baseline	Test
	Wed 24-10-2012	Mon 22-10-2012
Time period:	23:00 to Thu	23:00 to Tue
	25-10-2012 06:00	23-10-2012 06:00
Switch frequency [Switches/hour]	0.0044	0.0013
Number of stops	9	3
Average power consumption	$2.91 \mathrm{~kW}$	2.65 kW
Energy consumption	20.4 kWh	18.5 kWh
Average outdoor temperature	10.14 °C	11.00 °C

ENERGY AND CLIMATE REFRIGERATION AND HEAT PUMP TECHNOLOGY

ESO2 Optimization of super market refrigeration systems, main results:

- Measure actual refrigeration capacity needed on the cabinets and identify saving potential
- ✓ Done, apparent energy saving potential 20 to 30 %
- Software for diagnosing energy performance of plant
- Steady state model developed using exergy calculations for identifying mal-performance, not yet validated with data
- Compare mass flow measuring methods direct/ indirect
- Swept volume, AKV valves, coriolis, vortex
- Software tool for sizing compressors and estimating load profile
- Pack Calculation II load profile validated
- Display cabinet models finalized, but not yet implemented in PCII
- Optimized energy performance by coordinating/ overriding local controllers as an add on for the present control system
- Preliminary test results promising, energy saving 9 % (night)