

# Integrated CO<sub>2</sub> systems for warm climates

Diego Malimpensa



# Field experience

Integrated compressor rack for medium-sized supermarket in southern Germany Refrigeration, air conditioning & heat recovery loads

2 - MT : 60 kW

1 - LT : 8 kW

 $1 - Par : 12 m^3/h$ 

1 - H/R : 75 kW

1 - AC : 30 kW







# Field experience

- 1. MT Compressors
- 2. LT Compressor
- 3. Parallel Compressor
- 4. Heat recovery heat ex.
- 5. Gas Cooler & "false load"
- 6. Transcritical & flash gas valves
- 7. Air conditioning heat ex.
- 8. Oil return











Complete control of the entire unit on one single device

- Lower installation costs/ space
- Faster commissioning
- Increased usability (one point of access)
- Improved efficiency





Hot Water



## How to divide total energy consumption between REF – AC – HR?

One unit providing REF+AC+HR

#### Compressor power consumption [kW]

- P<sub>MT</sub>: Medium temperature compressors
- P<sub>LT</sub>: Low temperature compressors
- P<sub>PC</sub>: Parallel compressors
- P<sub>GC</sub>: Gas cooler

#### Heat transfer

- Q<sub>AC</sub>: Air conditioning heat
- Q<sub>HR</sub>: Heat recovery heat







## How to divide total energy consumption between REF – AC – HR?

Site status reading: main variables, energy consumption, heat transfer Real time COP calculation, division of power consumption











Temperatures
Pressures
Comps data

**Entalpies Qualities** 

 $egin{array}{c} egin{array}{c} egin{array}$ 

P<sub>HR</sub> P<sub>AC</sub>

#### Air conditioning mode



Higher quality of vapour  $\dot{m}_{AC}$  Mass refrigerant flow  $\dot{m}_{AC}$ 

#### **Heat Reclaim mode**



Higher gas cooler pressure Higher quality of vapour

$$\frac{COP_{HR\ ON}}{COP_{HR\ OFF}\ [T]} = \frac{P_{HR\ ON}}{P_{HR\ OFF}}$$





#### PARALLEL COMPRESSOR

Receiver pressure control Activated with sufficient flash gas Flash gas valve synchronisation

#### Higher efficiency

- High gas cooler pressure
- AC load
- Heat recovery



Higher efficiency at higher outside temperature





### **Power consumption vs Temperature**







## **Energy consumption comparison**









Munich [8°C]

## **Energy consumption comparison**

■ Booster with Flash Valve
■ Cascade R134a/CO2
■ Booster with Parallel Comp 200 Power Connsumption [kW] 180 -6% 160 -10% 140 120 100 80 60 40 20 0





Venice [13°C]



Palermo [18°C]

italian transcritical CO<sub>2</sub> systems (Carel 2013)







High Efficiency Solutions.

