

Natural Refrigerants in Different Applications

Pega Hrnjak

pega@illinois.edu

Res. Professor, U. of Illinois, Urbana-Champaign Co-Director ACRC, President, CTS

A brief reminder

- In **vapor compression** systems:
 - Hydrocarbons: R600a, R290,
 - Carbon Dioxide: R744
 - Ammonia: R717

- Serious potential to become mainstream option
- Air: R729 (aircrafts, low temperatures,..)
- Water: R718 low pressures and large equipment per capacity
- Helium (Stirling) cooling issues, niche applications
- In absorption systems: (niche applications, inexpensive heat)
 - Ammonia water
- In ejector systems: (when steam is almost free)
 - Steam
- Other niche refrigeration options:
 - Magnetic, acoustic, electrochemical, ...

Hydrocarbons

- Almost drop-in replacement for R22 (R290)
 - a/c or commercial refrigeration
- Easy replacement for R12 or R134a (R600a)
 - Refrigerators are the most successful application, mostly in Europe
- Flammability mitigated by design and charge
- Charge limits 50g (?) or 150 g (?)
- Lowest charge known: 48g/kW @ 1kW, aircooled

202

NH

Strong activity to increase use and expand applications

- Ongoing efforts to use R290 as a R22 replacements in a/c (mini splits, ...)
- R290 in commercial refrigeration:
 - bottle coolers (Pepsi, ...)
 - self contained cabinets (due to low cost and charge)
 - supermarket racks, typically with secondary fluids or in cascade
- Besides Europe push in China, rest of Asia, Latin America, Australia, USA

Carbon dioxide

- Very old refrigerant
- Abandoned because of high pressures and heavy equipment;
- Besides environmental reasons microchannel HXs and better materials reopened the door, especially for MAC applications
- Wrongly assumed to be low efficient refrigerant – will come back to that point briefly

CO₂ is still the most active area

- HPWH the first successful commercial application of transcritial systems:
 - Besides success in residential sector (reached stabile 0.5e6 p/a) rapidly expanding in commercial and industrial sizes
- Currently supermarkets are expanding application utilizing CO2 in low temp side (cascade, secondary) but more as transcritical:
 - strongest in Europe but elsewhere (Canada, Japan, USA, ...)
 - larger stores, with booster systems, heat reclaim etc....
- Convenience stores:
 - Mostly in Japan, but elsewhere too
- Bottle coolers tens thousands p/a
 - strong push by The Coca Cola (in four year cycles)

In MAC applications

- From extremely strong beginning prospects seemed to be closed when industry selected R1234yf as a replacement for R134a
- Situation changed when Daimler published flammability results in Oct. 2012
- Application: highest risk/highest potential
- Outcome unknown
- One element is certain:

natural refrigerants

CO₂ was not selected for MAC because low efficiency (COP)

Summary of R134a vs. R744 in SAE MAC program Identical capacity, same size HXs

natural refrigerants

- The only natural refrigerant that was continuously in use (in industrial refrigeration)
- Not appropriate for populated areas when charge is significant.

is significant

- US EPA does not require reporting a leak <100 lb (50kg)
- Low charge systems or chillers for a/c or refrigeration with secondary coolant or cascade
- Lowest published charge 18 g/kW@15kW, - aircooled

natural refrigerants

Significant changes

in approach to ammonia applications

- Increasing number of cascades (R717/R744) for commercial and industrial systems
- Strong push towards low charged, self contained units (we will hear more today – Mayekawa NewTon)

Push towards chillers

(excellent for applications that may otherwise have NH₃ in direct contact with air)

technology & innovation

natural refrigerants

 Ultra low charged systems – main trend we will touch that topic:

is better than

How to reduce charge

- Reduce internal volume, but do not increase DP
- Also shape helps

changing flow regimes

 Increase heat transfer: that reduces surface!

300kg/s.m²

200kg/s.m²

100kg/s.m²

 $G=50kg/s.m^2$

Intro

CO-

N

 NH_3

Higher α at higher mass flux

(1mm, 9-port, R134a)

NH₃, CO₂, even R290:

excellent charge reduction potential

Example: charge in a MC condenser for different refrigerants

How to compare refrigerants based on charge reduction potential

Objective to minimize:

- internal volume and
- void fraction but
- charge is also function of density

To be fair:

Maintain the same DP effect on COP : DP=f(velocity, L)

• Result: refrigerant mass and channel size

technology & innovation natural refrigerants

We kept the same

air side (fins, tubes), cooling capacity \rightarrow m_{ref}

So we varied:

Channel number

Channel size (diameter)

Conclusion as an introduction

- Applications for natural refrigerants are expanding
- Three dominant in respective fields: CO₂ HPWH in Japan, R600a refrigerators in Europe and NH₃ in industrial refrigeration
- Supermarkets, small commercial units, ... on a good trajectory
- MAC is back to the proving arena
- When treated with understanding each of the main alternatives is excellent and competitive.
- Major remaining tasks to be completed:
 - Ammonia: application of charge reduction opportunities
 - HCs: extremely low charge
 - CO₂: Reduce expansion losses, improve HXs, prove reliability at MAC
- Still to work on overcoming initial higher cost when advantages of natural refrigerants are clear and desirable