

Global Solutions for Industrial Refrigeration with "Natural Refrigerants"

2014.2.3

Mayekawa Mfg. Co., Ltd. Kuniaki Kawamura

Head Office of MAYEKAWA Japan

History

1924 Vertical low speed reciprocating refrigeration compressor

1964 Screw compressor

1978 Ultra low temperature accelerator

Refrigerated cargo vessel

Maglev train

Rocket fuel

1998 Nagano Olympic Winter Games

- Established in 1924, Capital 1,000,000,000 yen, Number of employees (2,200 domestic employees and 1,150 overseas employees), 57 Domestic offices and 82 overseas offices
- Manufacturing and sales of various gas compressors based on industrial compressors (More than 40% share of the international market)
- Plant engineering and consulting engineering services for agricultural and livestock industries, food industries and energy industries
- The manufacturer of individually make-to-order type industrial goods (capital goods)

2000

Around the world

Brazil plant

Moriya plant

Main operations

Mayekawa is doing business globally, having 57 domestic offices and 3 plants, and 90 overseas offices including 6 plants.

•Corporate offices 3-14-15 Botan, Koto-ku, Tokyo 135-8482,Japan Established in 1924 Capital 1,000,000,000 yen President Tadashi Maekawa

Domestic plant: Moriya, Higashi-Hiroshima, Saku Overseas plant: Mexico, Brazil, USA, Belgium, South Korea

Т

Industrial Refrigeration with Natural Refrigerants

Development Concepts

- High efficiency
- Low refrigerant charge
- Less leakage
- High reliability

Refrigerant (Natural Five)	NH ₃ Ammonia	CO ₂ Carbon Dioxide	HC Hydro Carbon	H ₂ O Water	Air
120°C 60°C 10°C -15°C -25°C	Utility hot water Heating Chilled water Ice making Cold storage, Fr	Utility hot water Hot Air Chilled water Ice making eezer, Fish boat	Utility hot water Heating HVAC	Heat recovery Chiller	
-40°C -50°C -60°C	Specific Refrig Freezer, Freezed-du stor	geration needs ry, Super Low temp rage			Cryogenics
Notes	Conventional system National	•Eco-Cute ll Projects	•Nat'l Proj. •Butane + Propane	 Nat'l Proj. Adsorption Heat Recov. 	•Nat'l Proj. •Air-cycle

Semi-hermetic Refrigeration Package

2007 Ministry of the Environment [Enterprise of Technical Develpment Against Global Warming]

Basic Concept of NewTon

Power reduction through renewal with NewTon

Customer	Volume	Age	Refrigerant formerly used		Power reduction
	(m3)	(year)	Refrig.	Comp.	(%)
Tokyo Toyomi (Case 2)	45,000	29	HCFC-22	Screw	31.1
Niigata Reizo	10,000	33	HCFC-22	Recip.	41.2
QP "Kewpie"	16,250	27	HCFC-22	Recip.	24.9
Sensui Reizo	6,125	38	HCFC-22	Screw	29.3
Ajinomoto	7,500	25	HCFC-22	Recip.	28.0
Gliko	30,000	30	HCFC-22	Screw	19.8
Showa Reizo	32,500	22	HCFC-22	Recip.	28.0
AMB Funabashi	30,000	25	NH3/Brine	Recip.	34.0

"NewTon" for ASEAN

"1st NewTon system" will be installed to P.T. ADIB Global Food Supplies in Indonesia.

P.T. ADIB

A cold storage warehouse nearby Jakarta

Joint Crediting Mechanism

Host Country : Indonesia

JCM Project for Cold Chain Industry in Indonesia with "NewTon"

This project was funded by the MOEJ in FY 2013 as the 1st project to Joint Crediting Mechanism .

Energy Efficient Refrigeration Technology

•MOEJ introduce the Energy Efficient Refrigeration Technology of "NewTon" as Japanese Good Practices.

http://www.env.go.jp/en/earth/ozone/goodpractice/full.pdf

- Hot water and Hot dry air supply Heat-Pump
- Source : Air and Water

"CO2 Heat Pump" LINITO

Eco-Cute "unimo A/W"

Eco-Cute "unimo W/W"

Ad-sorption Chiller Utilizing Solar Energy

мусом

- Air Cycle Refrigeration System
- For Low Temperature Applications

-50 ~ -100 °C

2003 Developed at [Technical Strategy for Rationalization of Energy Consumption Project]

Installation in Japan

-60°C ultralow cold storage

54% Reduction of CO2 Emission

Case Study 2,000 ton Refrigerator Interior Temperature : -60°C Power Consumption < Conventional System > (Air Ref)

In the industrial refrigeration application natural refrigerants can be selected without green house gas.

- In the view of prevention of global warming we would like to offer a proposal below;
 - 1. Promoting natural working fluids aggressively in the proven industrial field

Thank you very much for your Attention. ΜΔΥΕΚΔΨΛ

NATURE IS WHAT WE DESIGN FOR

