

EXPERIMENTAL AND EMPIRICAL EVALUATION OF THE ANNUAL EFFICIENCY FOR A TRANS-CRITICAL R744 BOOSTER SYSTEM IN ASIAN CLIMATE CONDITIONS

Oliver Javerschek, BITZER Kühlmaschinenbau GmbH

- / Motivation
- / Experimental and empirical study of a CO₂ booster system
- / Comparison of systems
 - > Optimized R404A / R404A system
 - > Optimized hybrid system: R134a / CO₂ cascade
 - CO₂ booster system
- / Results
- / Summary

Motivation

Motivation of the study

Eco-efficiency study

Analytical comparison of supermarket refrigeration systems

- / R404A DX MT R404A DX LT
- / R404A DX MT CO₂ Cascade DX LT
- / R404A Indirect MT CO₂ Cascade DX LT
- / CO₂ DX MT CO₂ Cascade DX LT

* Thurnham, Timothy 2010, Eco-Efficiency Study of Supermarket Refrigeration, SKM Enviros, London

Experimental and empirical study of a CO₂ booster system

Applied CO₂ booster system

- State-of-the-art CO₂ booster system of the 2nd generation
 - ➢ Oil management, flash gas bypass, IHX (flash gas ↔ liquid)
 - Water-cooled co-axial gas cooler allows the simulation of various ambient conditions
 - Without heat reclaim, parallel compression, two-stage gas cooler and peak load unit
- / Realistic MT / LT load simulation by means of electrical heaters

BITZER // ATMOsphere Asia 2014 // Page 7

Comparison of systems

Boundary conditions

SKM ENVIROS									CO, hooster	
Appendix A - Modelling Assumptions										
	Table A1: Assumptions – Thermodynamic Model ("State of Art" conditions)									
		Model 1		Mode	Model 2		Model 3		4	Full Load
R134a ! Insulation of receiver and liquid line, selection of EEX for small ∆p	Variable	MT	LT	МТ	LT		LT	MT	LT	
	Refrigerant	R404A	R404A	R4C 1A	CO ₂		22	CO ₂	Cr_	tc min = $15 \degree C$
	System type	DX	DX	DX	DX Cascade	tireo.	k e	DX	DX Cascade	
	Cabinet cooling load (kW)	60	16	60	16		16	60	16	
	Cabinet air temperature (°C)	+2	-24	+2	-24	+2	-24	+2	-24	
	Evaporating temperature (°C)	-8	-36	-8	-32	-11	-32	-6 °C	-32	
	Head pressure control setting (saturated temperature, °C)	25	25	25	N/A	25	N/A	15	N/A	
	Cascade heat exchanger TD (K)	N/A	N/A	N/A	5	N/A	5	N/A	5	
	Condepartures-cooler • Sup v. &rea.m2) • Air wra 3/s) • Fan p. (W)	340 13 3.3	110 4 1.0	470 18 4.6	N/A	500 20 4.9	N/A	260 15 3.4	N/A	HFC's: BITZER NEW ECOLINE VARISPEED CO_2 : VARISPEED compressors in the MT stage
	Evaporator superheat (K)	5	5	5	5	5	5	5	5	
	Suction return temp (°C)	10	-5	10	-5	10	-5	10	-5	
	Suction line pressure drop (MPa)	0.013	0.013	0.013	0.013	0	0.013	0.013	0.013	
	Discharge line pressure drop (MPa)	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	
	Liquid line pressure drop (MPa)	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	
	Condenser outlet subcooling (K)	2	2	2	0	2	0	0.5	0	ATMO
										technology & innovation

natural refrigerants 3-5 February 2014, Tokyo

Calculation of the annual efficiency

- Applied weather data (ASHRAE 2009, Weather Data Viewer 4.0)
- Results based on cooling capacity and power input of the compressors only
- Annual efficiency based on a SEER calculation acc. to prEN 14825

$$SEER = \sum_{j=1}^{22} \frac{Q(j) * h(j) * DG(j)}{P(j) * h(j)}$$

Results

Annual efficiency for Asian climates

Bitzer

COP as function of the ambient temperature

- / Classification of the annual efficiency of a state-of-the-art CO₂ booster system by an experimental and empirical study
- / Calculation of the annual efficiencies for optimized HFC systems
- / Out of the three solutions considered: An optimized hybrid system with R134a and CO₂ shows the best annual efficiencies in the chosen Asian climates
- Applying a CO₂ booster system of the 3rd generation is beneficial for the discussed climates

ASIA ATMO Sphere technology & innovation natural refrigerants

3-5 February 2014, Tokyo

Thank you very much!