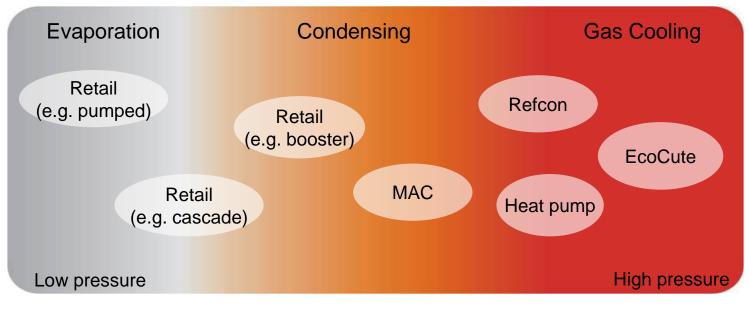


ATMO A NOVEL DESIGN OF COMPACT **EXCHANGER FOR CO2 TRANSCRITICAL APPLICATIONS**

3-5 February 2014, Tokyo

Why CO₂?

natural refrigerants

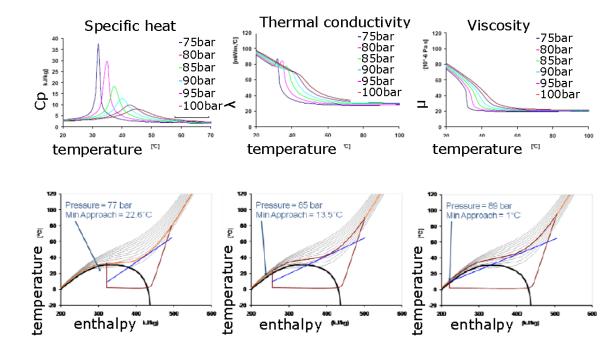

3-5 February 2014, Tokyo

Non-toxic, non-flammable.

Non-ozone-depleting

- Environmentally friendly with GWP=1
- Suitable for both transcritical and subcritical systems depending on application; focus either on heating or cooling

High cycle pressure ightarrow high fluid density throughout the cycle allowing smaller systems


CO2 transcritical properties

technology & innovation

natural refrigerants

- 3-5 February 2014, Tokyo
- Transcritical situation- high pressure
- Properties transfer non-linearly as temperature varied
- lower operating pressures problems with temperature pinches through the BPHE increases
- Small temperature difference require more heat transfer area

CO2 in transcritical properties and temperature approach inside heat exchanger

natural refrigerants

3-5 February 2014, Tokyo Existing BPHE

CO2 has larger pinch temperature difference

CO2 need larger heat transfer area

CO2 is not sensitive to pressure drop

Gas cooler analysis

Gas cooler performance at different refrigerants

		R410A	R22	CO2
refrigerant side	operating pressure (MPa)	3.78	2.56	12.5
	inlet temperature(°C)	81.3	81.3	81.3
	outlet temper (°C)	17	17	17
water side	inlet temperature(°C)	17	17	17
	outlet temper (°C)	65	65	65
performance	heat load (kW)	2		
	Pinch temperature(K)	3.8	2.0	6.0
	Pressurer drop (kPa)	0.15	0.55	0.16
Heat transfer area (m ²)		0.27	0.27	0.27

natural refrigerants

3-5 February 2014, Tokyo Existing BPHE

CO2 has larger pinch temperature difference

CO2 need larger heat transfer area

CO2 is not sensitive to pressure drop

New BPHE request

Longer thermal length

Gas cooler analysis

Gas cooler performance at different refrigerants

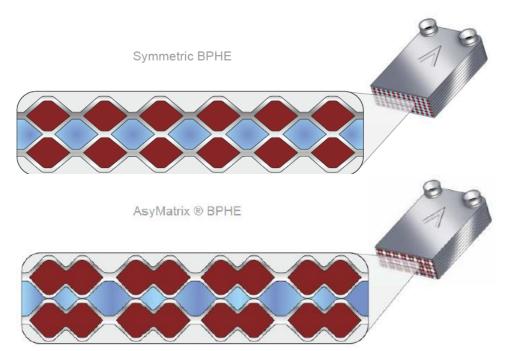
		R410A	R22	CO2
refrigerant side	operating pressure (MPa)	3.78	2.56	12.5
	inlet temperature(°C)	81.3	81.3	81.3
	outlet temper (°C)	17	17	17
water side	inlet temperature(°C)	17	17	17
	outlet temper (°C)	65	65	65
performance	heat load (kW)	2		
	Pinch temperature(K)	3.8	2.0	1.0
	Pressurer drop (kPa)	0.15	0.55	10.8
Heat transfer area (m ²)		0.27	0.27	0.27

natural refrigerants

3-5 February 2014, Tokyo

Conventional BPHE

Symmetric pattern - Generic


Side 1 = Side 2

AsyMatrix BPHE

Tailored pattern - Optimized Side 1 \neq Side 2

Asymetrix technology

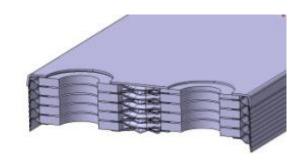
AsyMatrix[®] BPHE advantages over symmetric BPHE technology

Improved heat transfer – increasing system thermal performance

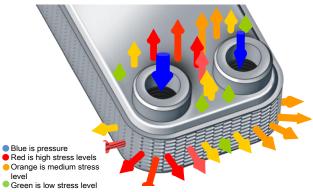
- Lower pressure loss reducing pump work
- Improved Mechanical strength stronger units

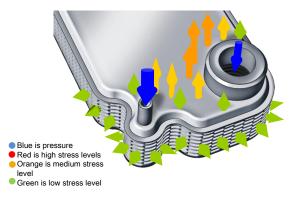
Greatly reduced dimensions – allowing for smaller system solutions

Lower hold up volume – reducing refrigerant costs



natural refrigerants


3-5 February 2014, Tokyo


BPHE structure for high pressure CO2 application

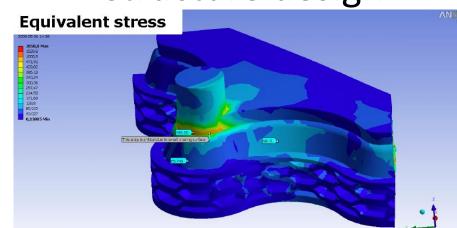
a: external support b: internal support Conventional BPHE structure for high pressure design

Conventional structure stress distribution at port area

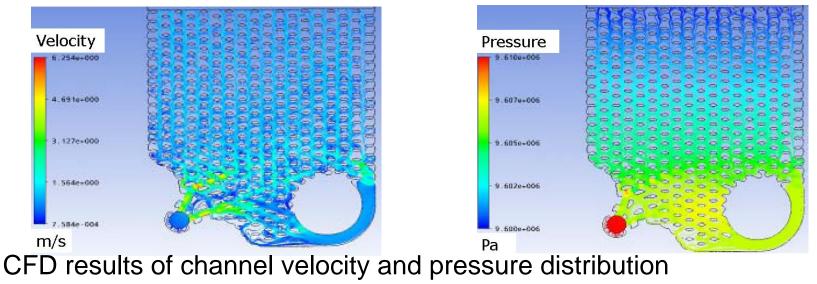
New design stress distribution at port area

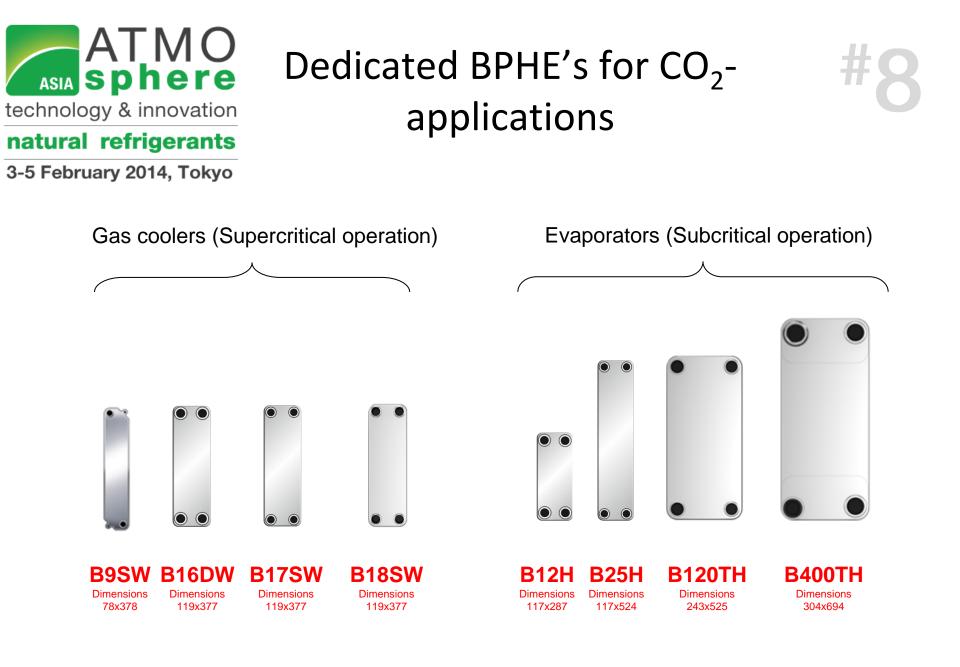
ATMO ASIA Sphere

technology & innovation


natural refrigerants

3-5 February 2014, Tokyo


FEM and CFD simulation for


structure design

#7

Equivalent stress at the corner part analysis using FEM

natural refrigerants

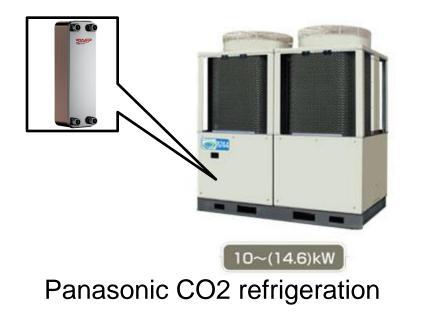
3-5 February 2014, Tokyo

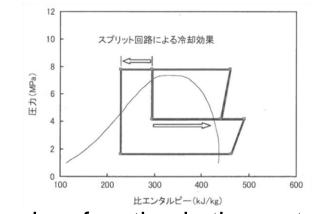
CO2-heat recovery for IT Datacenter

Design Data: Capacity: 100-200kW Water temperature: 40 – 70°C Design pressure: up to 130 bar COP: @ source temp: 10-20°C: 3,6-4,0

Supercritical CO2 refrigeration 10 challenge

technology & innovation


natural refrigerants


3-5 February 2014, Tokyo

To improve performance, design a compact, high pressure CO2 economizer

Solution

B17 adopted in the system

Economizer function in the system

ASIA ATMO Sphere technology & innovation natural refrigerants

3-5 February 2014, Tokyo

Thank you very much!

www.swep.net