

Ultra-low Charge Ammonia Glycol Chiller Cutting Down Operating Costs Engineering Industrial Refrigeration of Tomorrow

Inderpal Saund, Danfoss Food Retail Business Development Manager, APA & India

Speaker's Profile

Inderpal Saund Food Retail Business Development Manager Tel: 612 88451813 Fax: 612 96386088 saund i@danfoss.com

Expertise

- Ammonia & CO₂ Refrigeration Technologies
- Large Industrial Refrigeration System
 Application Technologies

Title

 FRL Business Development Manager APA & India, Danfoss

Content

Application

- End User
- Process
- Pain Points

Solution

- System Description
- Energy Efficiency
- Ammonia Charge
- Operational Experience

Application

End User's Profile

- SYLVAN Pty Ltd is the Australian subsidiary of SYLVAN Inc., the worlds largest producer and distributor of mushroom spawns
- The Australian operation is located in Windsor, New South Wales
- Producer of high quality mushroom spawn/nutrient mix for the Australian mushroom industry

Process

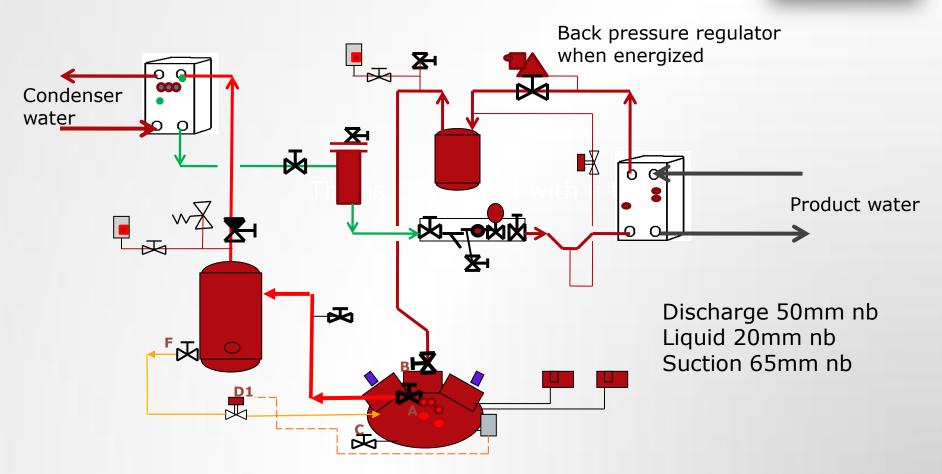
- Nutrients (grain based) are homogeneously mixed
- The mix is then sterilized at high temperature
- After sterilization, the mix is cooled in rotating drums, which are jacket cooled
- The jacket cooling is provided by Glycol, which in turn is cooled by a chiller
- Due to production expansion additional chiller capacity was required

Pain Points

- First Cost was a budgetary constraint
- Efficiency as part of Total Cost of Ownership was to be optimized
- Environmental footprint (CO2 equivalent was to be minimized)
- Reliability of equipment was paramount due to high value of the product
- Mick Daley, General Manager of Sylvan (Australia) Pty Ltd chose Strathbrook Industrial Services to provide a solution

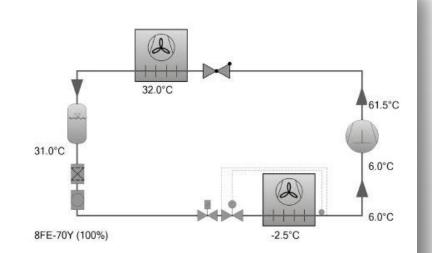
Solution

System Description


- Ammonia (NH3) was chosen due to the low GWP and high efficiency
- A DX system was designed to minimize the refrigerant charge and therefore the potential risk
- The chiller was pre-manufactures at the contractor's facility and matched up to a **dry cooler** on site to provide the heat rejection
- The dry cooler principle was chosen to enable a packaged, self contained ammonia system without any necessity to connect ammonia pipes on site

Ammonia Water Chiller Package

Bitzer W6GA.2K 10 SST / 35 SCT 145 kW Q 22 KW Motor



Energy Efficiency – R134a

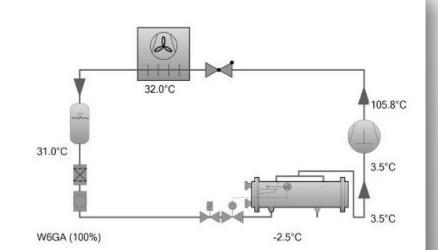
Input Values

Compressor model Mode
Mode
Refrigerant
Reference temperature
Evaporating SST
Condensing SDT
Liq. subc. (in condenser)
Suction gas temperature
Operating mode
Power supply
Capacity Control
Useful superheat

8FE-70Y Refrigeration and Air conditioning R134a Dew point temp. -2.50 °C 32.0 °C 32.0 °C 1.00 K 6.00 °C Auto 400V-3-50Hz 100% 100%

Result

8FE-70Y-40P
100%
104.9 kW
105.1 kW
104.9 kW
27.8 kW
68.7 A
380-420V
IJZ.O.HW
3.78
3.78
2347 Kg/h
Standard
61.5 °C



Energy Efficiency – NH3

Input Values

Compressor model Refrigerant Reference temperature Evaporating SST Condensing SDT Liq. subc. (in condenser) Suct. gas superheat Useful superheat Motor speed Drive Capacity Control

Result

Compressor	W6GA
Capacity steps	100%
Cooling capacity	105.8 kW
Cooling capacity *	105.6 kW
Evaporator capacity	105.8 kW
Shaft power	20.2 kW
Condenser Capacity	120.0 KW
COP/EER	5.25
COP/EER *	5.24
Mass flow	550 Kg/h
Operating mode	Coupling (1:1)
Compr. speed	1450 /mín
Recommended driving motor	30.0 kW
Discharge gas temp. w/o cooling	105.8 °C

Operation – COP Comparison & Savings

Efficiency Gain

 $P_{NH3} = \frac{Q}{COP_{NH3}} ; P_{R134a} = \frac{Q}{COP_{R134a}}$ $\frac{P_{R134a}}{P_{NH3}} = \frac{Q}{COP_{R134a}} \times \frac{COP_{NH3}}{Q} = \frac{COP_{NH3}}{COP_{R134a}} = \frac{5.25}{3.78} = 1.39$

I.e. for the same refrigeration capacity in kW, **39 percent** more power is necessary when using R134a.

At approximately 2,500 full load hours, the total electricity used is:

$$P = \frac{Q}{COP} * t = \frac{160 \, kW}{5.25} * 4,500 \, h = 137,140 \, kWh$$

- In Australia, the electricity tariff is approx. 0.20 AUD/kWh.
- With the above, by using NH3 instead of R134a, an annual saving of AUD 10,670 is achieved.

Refrigerant Charge

- By using PHE's for condenser and evaporator, internal volumes were kept to a minimum
- Using a remote dry cooler further reduced the ammonia volume
- Care was taken to design the chiller as compact as possible
- By using Danfoss ICF compact valve stations, the ammonia charge was further reduced
- The result was a total charge of 4.9kg of ammonia
- This represents 30g NH3/kW
- Compare to 1-2,000g R404A for some commercial applications

Outdoor Chiller installation

Note the packaged NH3 unit

a test

Integrated control panel

n a test

ENGINEERING TOMORROW

Chiller and remote dry cooler

n a test

Danfoss regulating valve

i a test

ENGINEERING TOMORROW

Ultra compact Danfoss ICF valve station

a test

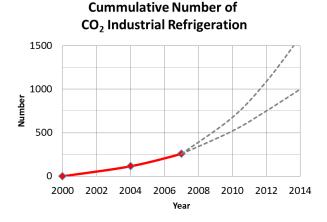
Lessons Learned

- Ammonia DX represents a cost effective, low carbon footprint, energy efficient solution compared to Freon chillers in certain applications
- Careful design with proprietary oil return ensured successful, low maintenance operation
- Operating cost well down on alternative system solutions
- System reliability for critical process first in its class
- Future expansions will follow similar footprint

CO₂ in Industrial Refrigeration - History

The Past:

1992 The CO₂ was re-invented (Gustav Lorentzen)


2004 **115** CO_2 / ammonia installations operating in Europe. 35% of these installations in The Netherland. (Holm Gebhardt, Nestle)

Today:

Industrial CO_2 installations is today build with "standard" components, and therefore it is difficult to trace the number of installations.

More than **500** installations operating in Europe, dominated by Nederland, France and Spain.

It is estimated that **10-15 %** of all new industrial installations in Europe is build with CO_2 .

Co2 in Commercial Refrigeration

Since 1992 when CO_2 was re-invented (Gustav Lorentzen) Danfoss have played a very active role in ensuring we have the mechanical and Electronic components to support the Co2 movement.

Today there are over 10,000 Co2 systems around the world which are using Danfoss controls.

Q & A

ENGINEERING TOMORROW