

Development of climate friendlier truck refrigeration systems with R-290

Dr. Daniel Colbourne, Dr. Johanna Gloël, Dietram Oppelt (HEAT/GIZ)

Peter Solomon (Transfrig)

Michael Schuster (GIZ South Africa)

19 & 20 April, 2016 - Barcelona

On behalf of

of the Federal Republic of Germany

Environmental impact of transport refrigeration

- Refrigerant HFC-404A with GWP of 3,922 is standard
- High leakage rates of 20%, 30-50% in developing countries
- Promoted alternative refrigerants with GWPs of > 1000
- High energy consumption
- Relevance for food security

- the cooperation partner

- Only South African transport refrigeration company
- Founded in 1980
- Local production in Johannesburg
- High market share for trucks and vans in South Africa
- Sales in Sub-Saharan countries and internationally
- leader for environmental friendly transport refrigeration technology in Africa

Timeline

- Start of development: November 2014
- Field trial: Spring 2016
- Advanced field trial South Africa: Autumn 2016
- International: 2017

Technical specification of R-290 unit MT480

Unit name	MT450	MT480
Refrigerant	R-404A	HC-290
Initial refrigerant charge	3.5 kg	0.65 kg
Cooling capacity	7.95 kW for 0°C 4.55 kW for -20°C	7.95 kW for 0°C 4.55 kW for -20°C
Powered by	Open-type, driven by diesel engine	Semi-hermetic compressor, electrically driven, diesel-driven alternator
Expansion device	Thermostatic expansion valve	Electronic expansion valve
Compressor	Fixed speed	Variable speed (60 – 100%)
Condenser tubing	9.5 mm	5 mm
Evaporator tubing	9.5 mm	7 mm

Performance improvements due to use of R-290 at high ambient temperatures

Performance at extreme conditions for LT (T = -20°C)

Performance at extreme conditions for MT (T = 0° C)

Higher cooling capacity at high ambient temperatures

Cooling capacity at extreme conditions for LT (T = -20°C)

Cooling capacity at extreme conditions for MT (T = 0°C)

Improvement of performance

Measure	Efficiency benefits
Thermodynamic properties of HC-290 refrigerant	✓
Optimised HC-290 compressor (including oil)	✓
Redesign of condenser (e.g. circuitry and reduced tube size)	✓
Redesign of evaporator (e.g. circuitry and reduced tube size)	✓
Liquid suction heat exchanger (in-receiver accumulator)	✓
Pipe sizes, line components	n/a

Safety aspects: General Risk Assessment approach according to EN1127-1:2011

Typical locations of SOIs and potential flammable zones

Leak identification system

Gas detector

- Immediate detection of leak
- Unreliable in the long-term
- Regular calibration and checking needed
- Easily damaged
- Adds substantial costs

System operating parameters

- e.g. suction pressure & temperature, superheat, degree of EEV opening
- Longer response time than gas detector
- More reliable in the long-term, no calibration needed
- No contamination
- Extensive testing necessary
- → Chosen because of low cost, better reliability, not dependent upon special maintenance over lifetime

Improvement of energy efficiency

Measure	Efficiency benefits
Thermodynamic properties of HC-290 refrigerant	✓
Optimised HC-290 compressor (including oil)	✓
Redesign of condenser (e.g. circuitry and reduced tube size)	✓
Redesign of evaporator (e.g. circuitry and reduced tube size)	✓
Liquid suction heat exchanger (in-receiver accumulator)	✓
Electronic expansion valve	✓
Variable speed compressor	✓

Life cycle emissions – comparison R-404a and HC-290

	R-404A unit	HC-290 unit
GWP	3,922	3
Charge size	3.5 kg	0.65 kg
Annual leakage rate	50 %	30 %
Direct emissions	6.9 t CO ₂ eq	0.001 t CO ₂ eq
Fuel consumption*	1.2 L/h	1.0 L/h
Runtime hours	1,500 h/year	1,500 h/year
Indirect emissions	4.8 t CO ₂ eq	4.0 t CO ₂ eq
Total emissions	11.8 t CO ₂ eq	4.0 t CO ₂ eq

^{*} estimate Page 13

Summary

- Environmentally friendly refrigerant
- ✓ High energy efficiency (also for high ambient temperatures)
- ✓ Reduced refrigerant leakage
- ✓ Comprehensive safety concept for flammable refrigerants
- ✓ Compliance with safety standards