

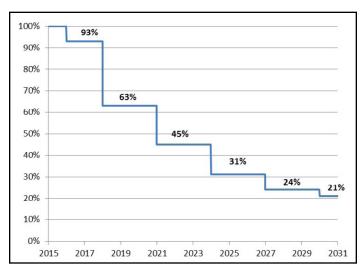
NxtHPG project

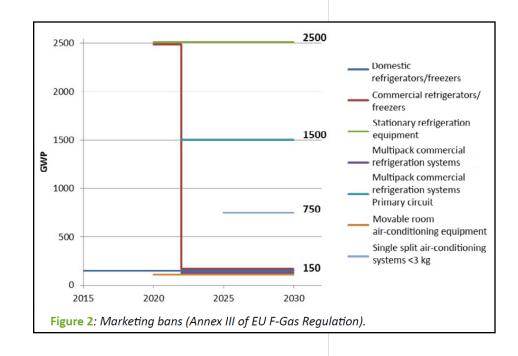
"Next Generation of Heat Pumps working with Natural fluids"

José M. Corberán

Contents

- 1. Introduction
- 2. Project objectives
- 3. Project organisation
- 5. Prototypes
- 6. Conclusions



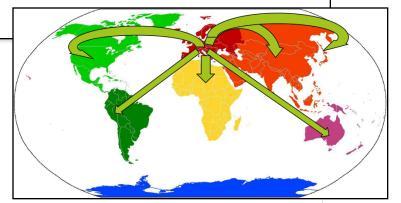


- The newly implemented F-Gas Regulation (517/2014) imposes a large reduction in the use of HFCs in the EU, and will lead to a progressive drop on the availability of HFC refrigerants and very probably to a considerable rise of their cost.
- This 'phasing down' which mainly started and affects the Refrigeration Sector will certainly influence the air conditioning and heat pump sector

Phase-down shchedule for the total bank of HFCs

- The barriers for the wide-spread use of natural refrigerants CO2 and HCs for heat pumps are twofold:
 - Non-technical barriers:
 - The most important barrier against hydrocarbons is the fear of possible accidents due to its high flammability.
 - No barrier to the development of CO2 equipment except for their cost.
 - Technical barriers:
 - Hydrocarbons (HCs):
 - No availability of scroll compressors for heat pumps
 - Not full availability of other components
 - Limitations on refrigerant charge
 - Safety
 - Maybe cost
 - CO2
 - Limited availability of components (mainly compressors)
 - Transcritical cycle is not enough efficient except for certain applications
 - Maybe cost

NxtHPG project strives to give a step forward to overcome these barriers and usher in a new generation of heat pumps based on HCs and CO2



- CO2 and HCs have been extensively proved in small refrigeration equipment
 - Refrigerators, bottle coolers, freezers, display cabinets...
- CO2 and HCs are quickly spreading in Refrigeration, supermarkets, commercial malls...
 - More and more components available
 - Increased skills to handle these refrigerants
 - Increased public awareness of the technology
 - Increased public acceptance

- A new HP heat technology with Natural fluids could successfully deploy in Europe without a strong competition from abroad, and once the technology is demonstrated, its deployment worldwide could easily follow.
 - Niche market → Global market

Project Objectives

- The first objective of the project is the identification of the cases in which the
 development of a new generation of heat pumps employing Natural refrigerants
 can lead to a fast commercial exploitation of the first series of heat pumps
 developed here, and later to the successful deployment of the technology to other
 sizes, ranges and applications.
- General objective: development of α set of safe, reliable, and high efficiency heat pumps working with natural refrigerants (Hydrocarbons and CO2)
 - Reach higher efficiency (10 20% SPF improvement) and lower Carbon footprint (20% lower TEWI) than the current state of the art of HFCs/HFOs or Sorption heat pump technologies
 - Keep the cost very similar or only a bit higher (10%) in a way that the better environmental performance clearly compensates for the extra cost;

Project Organization

Project Organization

• <u>6 RTD European institutions</u>:

UPVLC Valencia, SpainKTH Stockholm, Sweden

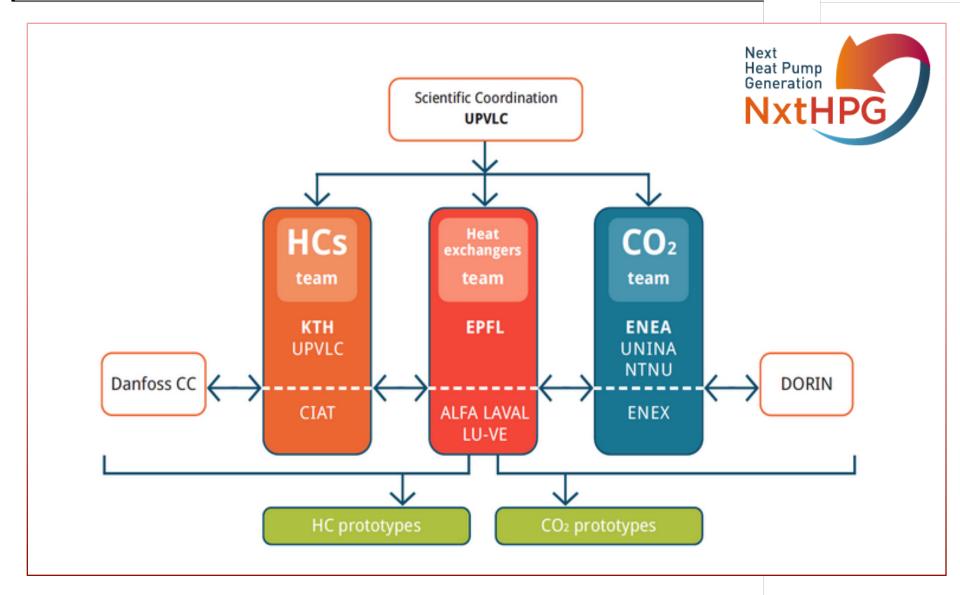
EPFL Lausanne, Switzerland

ENEA Rome, Italy
UNINA Naples, Italy
NTNU Trondheim, Norway

6 European OEMs:

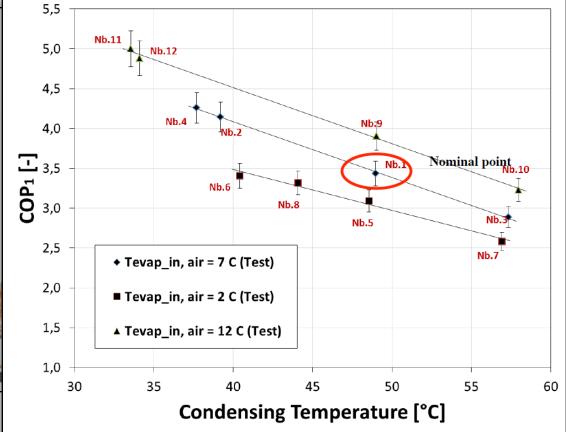
 DANFOSS CC Compressors, France DORIN Compressors, Italy Sweden ALFA LAVAL Heat Exchangers, LU-VE Heat Exchangers, Italy **CIATESA** Heat Pumps, Spain - ENEX Heat Pumps, Italy

<u>European Heat Pump Association</u>: EHPA



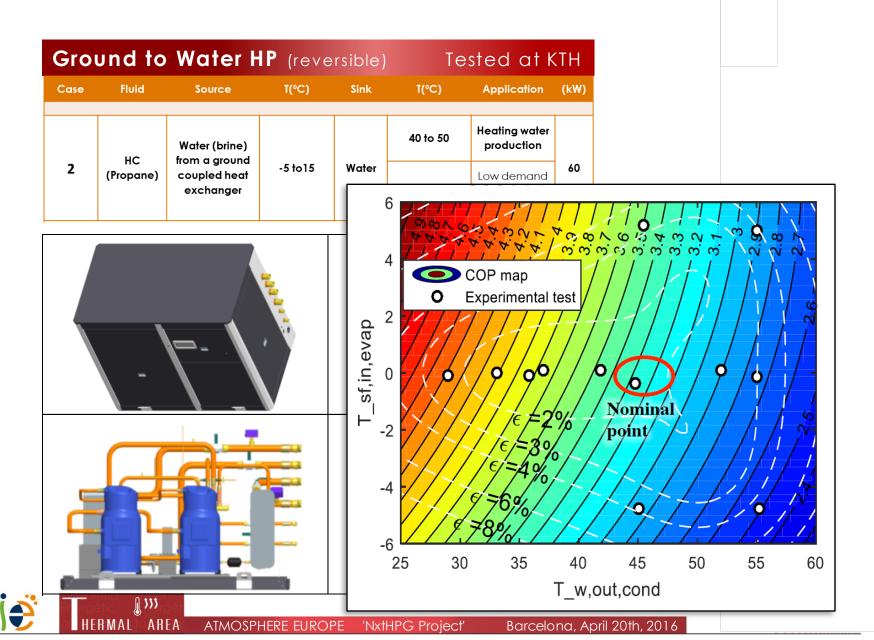
Project Organization

Prototypes

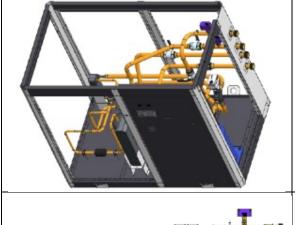


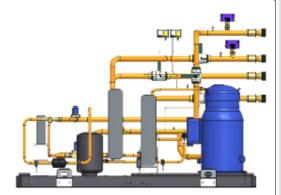
Prototype 1: Propane

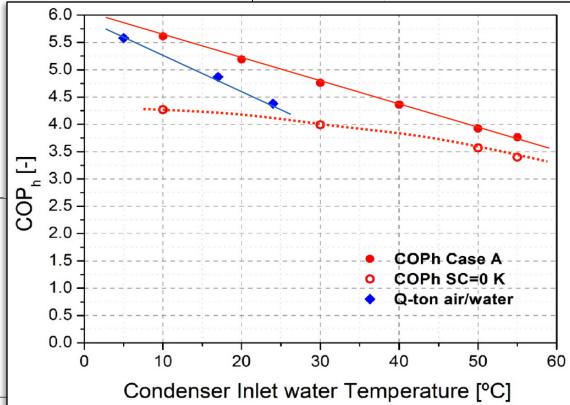
Air to Water HP (reversible)					Tested at KTH		
Case	Fluid	Source	T(°C)	Sink	ĭ(°C)	Application	(kW)
1	нс	Air	-10 to 35 (outdoor air)	Water	40 to 50	Heating Water production	40
	(Propane)				60	Low demand of Domestic hot water	40



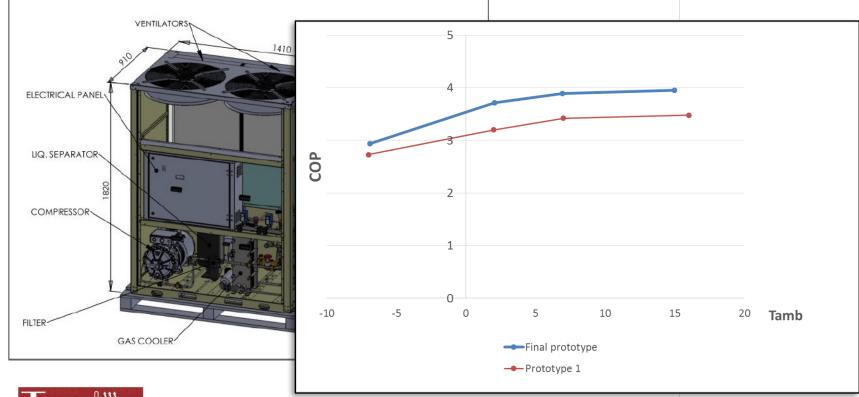
Prototype 2: Propane





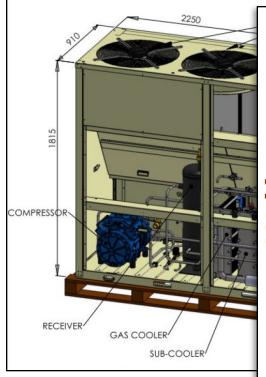

Prototype 3: Propane

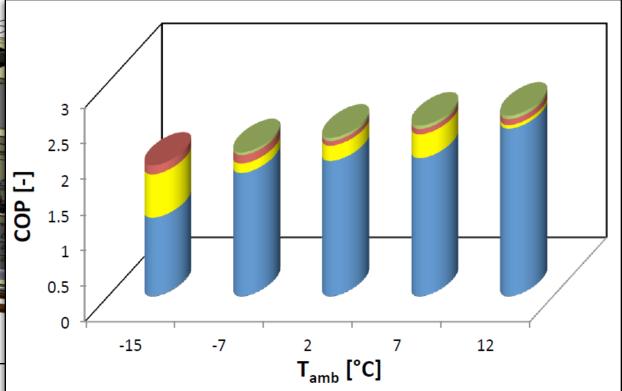
HEAT PUMP BOOSTER - SHW				Tested at UPVLC			
Case	Fluid	Fluid Source T		Sink	T(°C)	Application	(kW)
3	HC (Propane)	Water (Neutral loop)	10 to 15 (Sewage water) or 25 to 30 (Condensation loop)	Water	60	Domestic hot water production	50



Prototype 4: CO2

AIR - DHW PRODUCTION					Tested at ENEA				
Case	Fluid	Source	T(°C)	Sink	T(°C)	Application	(kW)		
4	CO2	Air	-10 to 10 (winter) 20-35 (summer)	Water	60 (up to 80)	Domestic hot water production	30		





Prototype 5: CO2

AIR - High T HEATING WATER					T€	Tested at ENEA			
Case	Fluid	Source	ĭ(°C)	Sink	I(°C)	Application	(kW)		
5	CO2	Air	-10 to 35	Water	80 (return water 40)	Heating & DH water production (DHW in summer)	50		

Conclusions

- The project have involved a large group of OEMs of both components and heat pumps who have provided their best technology to reach the project objectives.
- 5 cases have been selected because they offer both an interesting market and because a solution with a natural fluid fits well with the application.
- A completely dedicated prototype has been manufactured for each application: 3 employing propane and 2 employing CO2.
- Each prototype has been especially designed taking into account the specific characteristic of the application.
- The prototypes have been fully tested along two testing campaigns and interesting innovations and improvements have been found along the project duration
- Final results prove considerable high performance and reliable and safe operation

Thank you very much for your attention

José M. Corberán

