

EUROPE ATMON solutions for europe

natural refrigerants

Georges KHOURY – Advanced Products Manager

ATMO Sphere solutions for europe natural refrigerants

19 & 20 April, 2016 - Barcelona

100% CO₂ cooling solutions for electrical enclosures

Electrical enclosure coolers issue

Function and advantages of electrical enclosure air cooler

> Enclosure air cooling to avoid electric components overheat and the process failure > Protect the components from the environment (dust, oil, humidity, graphite, etc.) by preventing the mix between inside and outside air (compared to ventilation)

Constraints of standard air coolers (R134a)

Maintenance Refrigeration technician (HFC) required > Changing filters, cleaning, fans exchanges > Energy consumption > Carbon footprint

Vapor compression Cooler

ondenser

Evaporato

30°C

Electrical Enclosure

- >Increase the lifetime thanks to cooling (drive controller, batteries, electrical and electronical components, controllers, etc)

INCREASED DURABILITY

- Low pressure ratio
- Reduced friction surfaces
- Adapted cooling capacity to avoid short cycles
- No degradation of the condenser (fin corrosion, disassembly/reassembly of the equipment)

> COMPACTNESS

- Compact thermodynamic loop
- No oversizing (Stable Cooling Capacity)
- 40% Volume reduction

SANDEN cooler 28cm

CO, technology benefits

Size comparison for a same cooling capacity

 \geq WITHOUT FILTER, WITHOUT MAINTENANCE The cooling capacity is directly function of the exchange surface « A » and of the difference of temperature between the gas and the air.

 $\mathbf{P} = \bigcup^* \mathbf{A}^* (\mathbf{T}_{\text{Ref}} - \mathbf{T}_{\text{air}})$ (U is the heat transfer coefficient of the used materials)

For a same heat load, the exchange surface necessary is divided by 2.5 when the ΔT (T_{Ref}-T_{air}) is double.

CO, technology benefits

Higher ΔT than HFC (48K versus 20K)

Advantages of CO_2 (R744) as Refrigerant

Non toxic Non flammable ODP = 0GWP = 1➔ No need for **Refrigerant recovery**

CO₂ technology benefits

\geq WITHOUT FILTER, WITHOUT MAINTENANCE

The CO₂ Thermodynamic loop allows to avoid fins and thus avoid to protect these by a filter.

SANDEN CO₂ air cooler

- Maintenance cost reduction (change time and filter).
- No risk of increasing consumption or decreasing performances.
- No risk of fins corrosion.
- No risk on health by reducing the ambient air quality (due to dirty filters). - No risk of condenser fans failure due to filter soiling.

CO, technology benefits

>Lateral enclosure air coolers

500W

1000W

1350W

> Top mounted enclosure air coolers

Product range & cooling capacity

Power Consumption comparison between :

- 1- Our lateral CO₂ enclosure cooler (1000W)
- 2- A standard lateral R134a enclosure cooler (1000W)

Laboratory tests:

> Controlled conditions >COP results table

	COP @ 25°C/25°C	COP @ 35°C/35°C
CO_2 cabinet cooler	2,7	2,4
R134a cabinet		
cooler	2,5	1,76

The CO₂ cooler has a **gain of 24%** on the consumption in real conditions

Comparative tests in SANDEN Factory in FRANCE

Field Tests in Factory: Cooling down electrical enclosure for Machining process

*CO*² *cooler field test*

Consumption results table

Cooler	Consumption [kWh]	Mean power supply [W]	Mean inside temperature [°C]	Mean ou temperatu
² cooler	83,7	108,4	33,93	25,0
andard sure cooler	111,1	142,8	36,56	25,1
gy savings n CO ₂ [%]	24,7 %			

Investment return period calculation (comparison with a standard R134a cooler) >The following assumptions are based on data from the market

	Standard R134a cooler	SANDEN CO2 cooler	
Lifetime	8	12	years
Initial cost	1450	2200	€
Electrical Energy Consumption	1000	750	kWh/year
	140	105	€/year
Maintenance	175	0	€/year
Cost at end of life	700	0	€

 \geq Return on investment period less than 4 years for the CO₂ cooler.

 \geq Total cost for CO₂ cooler of 6290 EUR (after eighteen years).

Fotal cost for R134a cooler of 10720 EUR.

Economical study

- ✓ Green and Safe technology for air coolers
- Heavy Duty Product and long lifetime
- ✓ Compactness gain ~40%
- ✓ Energy savings ~24%
- ✓ No over-sizing of cooling capacity
- ✓ Acceptable ROI and low running cost

Key findings / observations / feedbacks

Georges KHOURY – Advanced Products Manager

ATMO Sphere solutions for europe natural refrigerants

19 & 20 April, 2016 - Barcelona

THANK YOU! GRACIAS!

19 & 20 April, 2016 - Barcelona

EUROPE AT MO solutions for europe natural refrigerants

Thank you very much!

