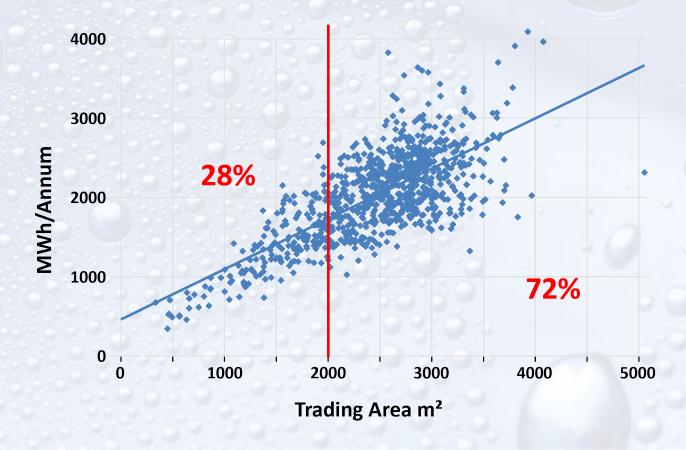


16 May 2016 – Melbourne "Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC, and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets"

Klaas Visser Principal KAV CONSULTING Pty. Ltd. Dip.Mar.Eng. (NL) Hon.M.IIR, F. Inst R, M.IIAR, M. ARA, M.KNVvK, Meurammon.

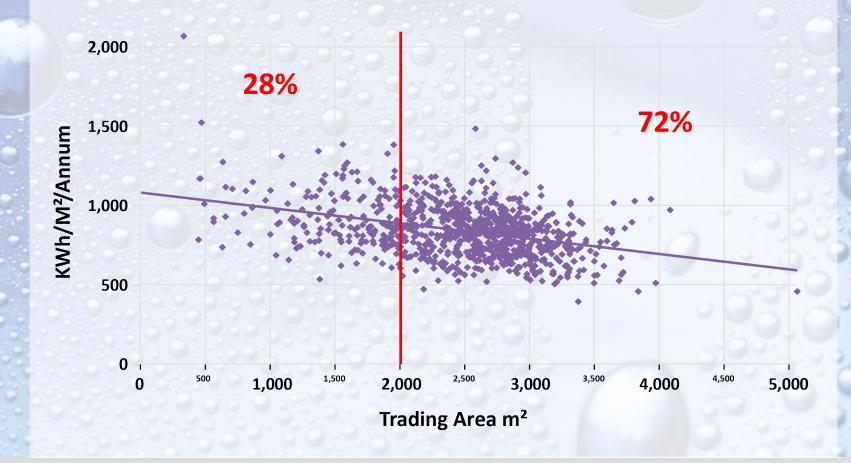
> PO. Box 1146, KANGAROO FLAT, VIC, 3555 AUSTRALIA Tel: +61 3 54 479 436 Email: kavconsult@bigpond.com

Introduction


- Analysis of Specific Electrical Energy Consumption (SEEC) in supermarkets by trade area and refrigerating plant type.
- Evaluation of energy savings with all water cooled CO₂ plants for AC, MT, LT refrigeration with parallel compression at;
 28% existing hybrid CO₂/HFC systems.
 30% existing HFC systems.
- Annual savings of \$21 to \$44 per m² trade area depending on location and local energy cost and electrical reheat cost when appropriate.
- Sharp reduction in indirect Global Warming Emissions (GWE).
- Virtual elimination of direct GWE from refrigerant fugitive gasses.
- All heat required for reheat, space heating and tap water recoverable from the CO₂ plant on demand.
- Reduced refrigerant top up replacement at much lower cost.

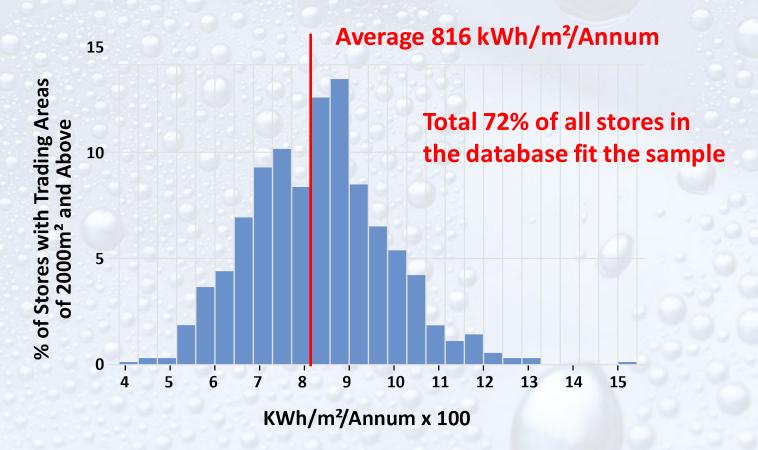
Slide 2 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

Total MWh/Annum vs Trading Area [m²] - All Stores



Slide 3 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

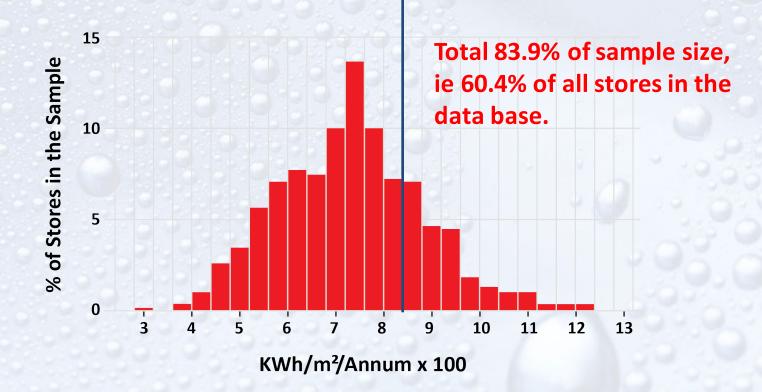
KWh/m²/Annum vs Trading Area [m²]



Slide 4 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

Histogram of KWh/m²/Annum – All Systems in Stores with Trading Areas of 2,000m² and Above

Slide 5 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

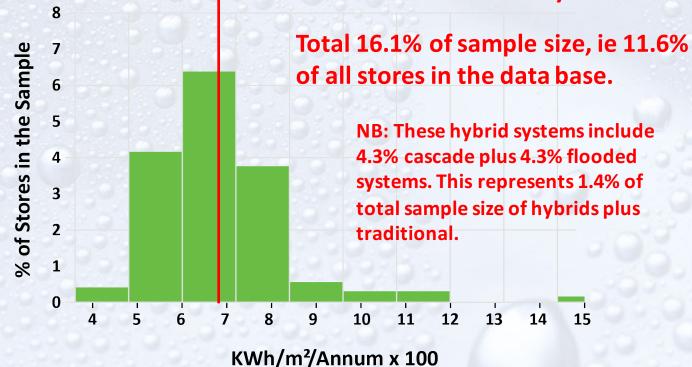


CONSUL Advisers to the Refrigerated Food Industries 16 May 2016 - Melbourne

PTY

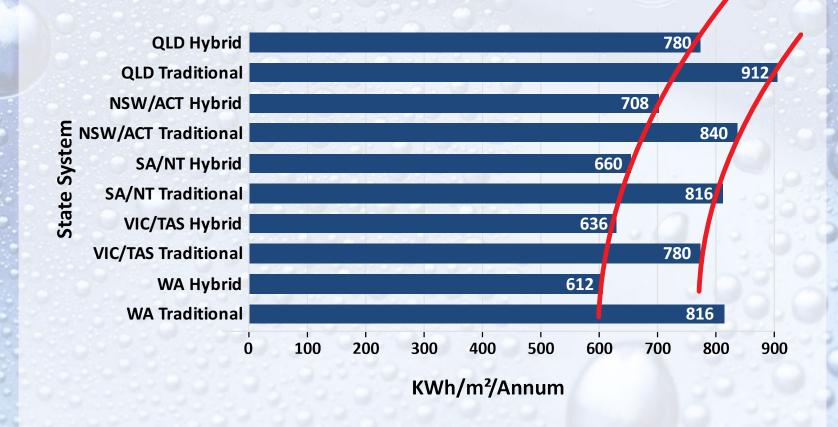
Average 842 kWh/m²/Annum

Histogram of KWh/m²/Annum – Traditional Systems in Stores with Trading Areas of 2,000m² and Above



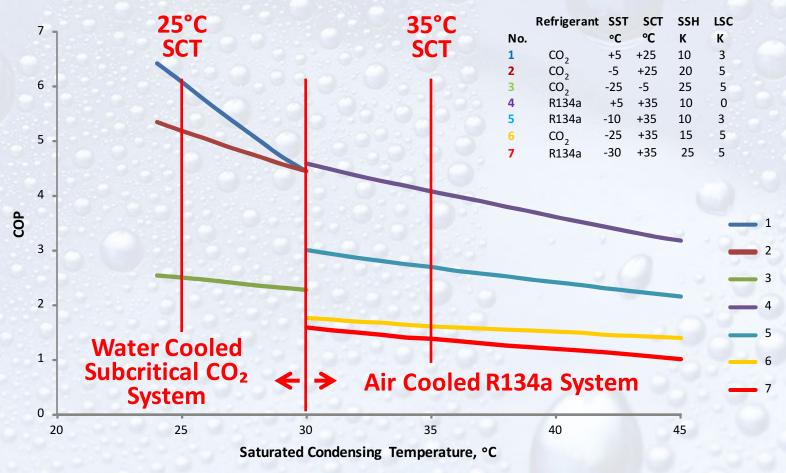
Slide 6 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

Histogram of KWh/m²/Annum – Hybrid Systems in Stores with Trading Areas of 2,000m² and Above Average 684 kWh/m²/Annum 18.5% less than traditional systems



Slide 7 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

KWh/m²/Annum – In Various Australian States in Stores with Trading Areas of 2,000m² and Above



Slide 8 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

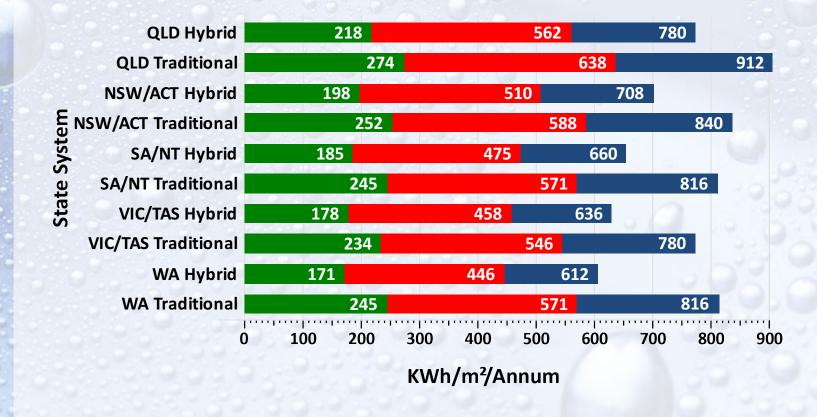
Coefficients of Performance (COP) of Water Cooled Subcritical CO₂ and Air Cooled R134a Refrigerating Systems

Slide 9 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

Advisers to the Refrigerated Food Industries

16 May 2016 – Melbourne

Comparison of Energy Consumption of Conventional Single Stage R134a Systems at 35°C Saturated Condensing Temperature with Two Stage Transcritical CO² System with Parallel Compression (2STCCO₂SPC) at 25°C Saturated Condensing Temperature

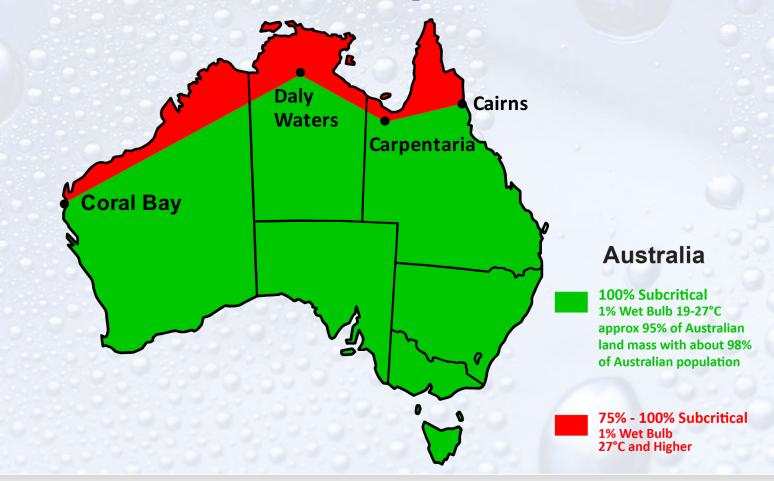

Energy Consumer		COPs at Sat. Suction				2STCCO,SPC Saturated			Enorgy Souring 9/(3)			
		R134a	R134a	CO2	R134a	Suction T́emperature, ℃			Energy Saving, % ⁽³⁾			
Function	%	+5	-10	-25	-30	+5	-5	-25	% Saving in Function	Function % of Total	Function Saving Share of Total	
											CO ₂	R134a
AC ⁽¹⁾	40	4.08	-	-	-	6.1	-	-	33	40	13.2	13.2
MT ⁽²⁾	30	-	2.69	-	-	-	5.18	-	48	30	14.4	14.4
LT CO ₂	15	-	-	1.61	-	-	-	2.5	36	15	5.4	-
LT R134a	15	-	-	-	1.38	-	-	2.5	45	15	-	6.8
% Total reduction in electrical energy consumption										33.0	34.4	
Subtract parallel compression 25% of AC energy saving								3.3	3.3			
Nett Energy Saving, %								29.7	31.1			
Say %									29.0	30.0		
Average Capital City Temperatures, °C – Australia Darwin 28°C Brisbane 21°C Sydney 18°C Perth 18°C Canberra 13°C Adelaide 16°C Melbourne 15°C Hobart 13°C												
Notes (1) Electric reheat and space heating also saved (2) Includes HT refrigeration												
	(3) % Enei	rgy saving	contributio	on from fur	nction =		OP R134a COP CO ₂))			

Slide 10 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

KWh/m²/Annum – In Various Australian States in Stores with Trading Areas of 2000m² and Above

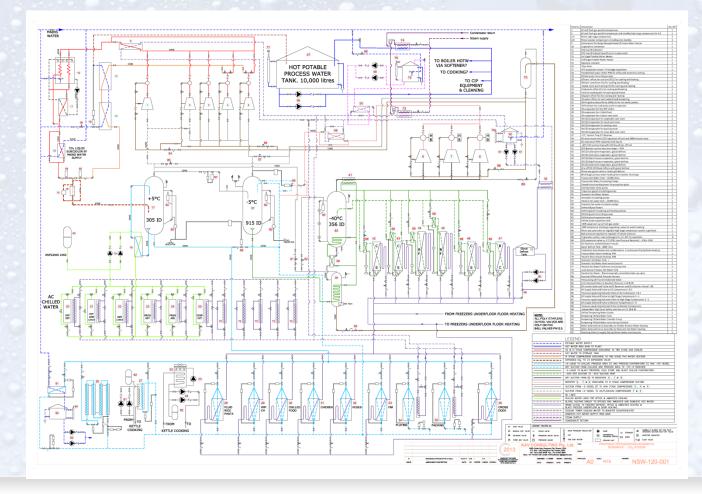
Slide 11 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

Energy Savings With Integrated 2 Stage Transcritical CO₂ Systems With Parallel Compression


State/ Territory	Energy Cor	tion in Isumption, Annum	Energy Cost \$/kWh	Energy Cost Reduction \$/m²/Annum of Trading Area			
	Hybrid	Traditional		Hybrid	Traditional		
QLD	218	274	0.13	\$28.34	\$35.62		
NSW/ACT	198	252	0.12	\$23.76	\$30.24		
SA/NT	185	245	0.16	\$29.60	\$39.20		
VIC/TAS	178	234	0.12	\$21.36	\$28.08		
WA	171	245	0.18	\$30.78	\$44.10		

Slide 12 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

Australia Climate Zones with Approximate Percentage Incidence of Subcritical CO₂ Condensing Annually


Slide 13 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

Schematic of a Fully Integrated Multifunction Two-Stage Sub & Transcritical CO₂ System with Parallel Compression on AC Stage. Recently Tendered; Ready for Construction in a 24°C Wet Bulb Area Near Sydney.

7 Refrigeration Functions Plus 9 Heating Functions.

Slide 14 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

Conclusions

Two Stage Multifunction Transcritical CO₂ Refrigerating Systems have the following major benefits when applied to supermarket refrigeration requirements

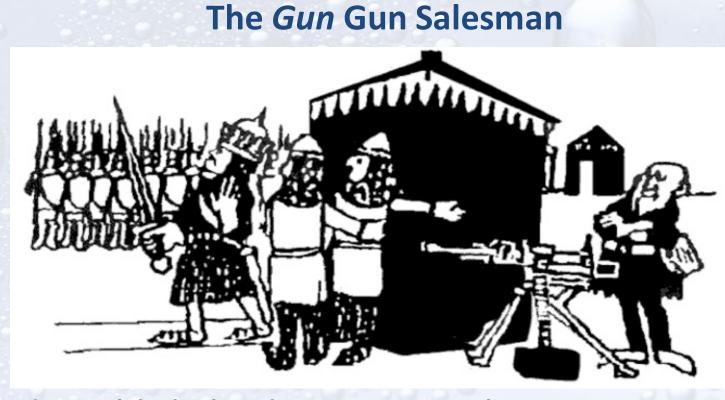
- Supermarket energy cost reductions of \$21 to \$44 per m² trade area depending on system type, location and local energy costs, and assume chilled water for AC.
- All heat energy required such as reheat, space heating and tap water is free from the CO₂ system giving additional energy cost reductions.
- Operating cost reductions as HFC losses are entirely eliminated.
- Additional energy savings with all direct CO₂ refrigeration for AC, MT and LT.

Slide 15 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

Conclusions Cont...

- Hybrid Evaporative Condensers and Gas Coolers (HECGCs) for CO₂ completely obviate any need for expanders and ejectors.
 Development of these devices is akin to the search for the Golden Fleece as cooling CO₂ with a critical point of 31.1°C with air at a temperature higher than the critical point is thermodynamic nonsense.
- CO₂/ammonia and CO₂/HC systems are inherently more energy efficient than CO₂/HFC cascade systems.
- CO₂/HFC cascade and hybrid systems have limited energy efficiency scope because most of the required refrigeration – AC, MT and CO₂ LT heat rejection – is affected by inherently low COP HFC refrigerants. The cascade affects the LT refrigeration, i.e. only a small portion of the refrigeration required, at a higher efficiency.

Slide 16 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016


Conclusions Cont...

- Reduced Global Warming Emissions (GWE) from reduced HFC leakage – direct GWE – and reduced energy consumption – indirect GWE.
- Future proofing of plants with the G20 agreed HFC phase down by about 80% by 2030.
- No fear of legionella with CO₂ hybrid condensers and they reduce water consumption compared to Cooling Towers and full service evaporative condensers.
- In new supermarkets reduced infrastructure costs for electrical supply and a heating gas supply if no gas cooking on site.

Slide 17 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

"No! - I can't be bothered to see any crazy salesman -

we've got a battle to fight!"

Slide 18 Comparison of Integrated CO₂ Refrigerating Systems with Traditional HFC and CO₂/HFC Hybrid and Cascade Systems in Australian Supermarkets ATMOsphere business case natural refrigerants, Melbourne, Australia - 16th May, 2016

Thank you for your attention. Any Questions?

