

June 16 & 17, 2016 - Chicago

Industrial Refrigeration – Transcritical CO₂

Fresh & Frozen Warehouse

Daniel Clark

- Independent Refrigeration consultancy since 2004
- Food Retail, Industrial and Pharmaceutical
- Refrigeration Engineers Specialized in CO₂
 - Technology Strategy Guidance
 - Tailored Specifications & Design
 - Cost Management
 - Choosing Partners & Appraisal
 - Repeatability and Quality
 - Project Management
- First attended CO₂ training in 2005 at the Danish Technology Institute

Why we specialized in CO₂ refrigeration Technology

- Safe A1 classification.
- Technically an excellent refrigerant.
- Inherent energy efficiency.
- Highly sustainable.
- Dry Expansion (DX) format = transferable maintenance skills from HFC solutions.
- Ensuring that our clients were well ahead of regulatory changes.

Leading our Clients to the right refrigeration solutions

Hamilton-Clark Overview

Case Study – Fresh & Frozen Warehouse Transcritical CO₂

Project Details

- Location Liverpool UK
- 47,000 sq ft & 1.6 M cu ft
- Two Dual Temperature CO₂ Booster Racks
- High redundancy ratio
- Frozen Duty 450,000 BTU/hr or 130 kW
- Fresh Duty 800,000 BTU/hr or 235 kW

Technologies

- Green & Cool / Dorin Transcritical Booster Systems
- Stepper Expansion Valves Precise liquid Injection
- High Pressure Pipe work System 870 psi & 1740 psi
- Comprehensive Control System & Internet Connectivity
 - Includes Fire Sprinkler Trace Heating System.
- Electronically Commutated (EC) Evaporator and Gas Cooler Fans
- LED Lighting Throughout

Advantages

- Game Changing Energy Efficiency
- Global Warming Impact vastly reduced from HFC TEWI
- Low Capital Costs
- None Toxic & None Flammable
- Less Operating Regulations
- Small Bore Brazed Copper Pipe Work
- Light Weight Services
- DX maintenance skills

Coldstore Energy Analysis

Energy Benchmarks

Benchmarks are taken from ICE-E project ('Improving Cold storage Equipment in Europe') - Study based on 295 coldstore installation datasets (70% EU Countries).

Energy Benefits

-18% Energy consumption

- Transcritical Technology
- Direct No Heat Exchange
- Excellent Refrigerant
- Close Control
- LED Lighting

Capital Costs

	Site Actual Consumption	Benchmark - Highest Efficiency	Benchmark - Mean	Benchmark - Worst Efficiency
Annual Cost	£103,886	£126,002	£249,054	£450,910
Annual Savings Against Benchmarks	-	£22,116	£145,168	£347,024
% Saving	-	17.55%	58.29%	76.96%

Benchmarks SEC values (Specific Energy Consumption): Mixed Use (Chilled & Frozen). 10% upper & 10% lower values removed. (Page 12, Table 2).

Site figure Includes associated Lighting, Tyco Sprinkler System.

Site Coldstore Area/Volume Total: 46,258.87 ft² 1,653,554 ft³

-28% compared to Ammonia Option

How CO₂ capitalizes on low ambient temperatures

June 16 & 17, 2016 - Chicago

REFRIGERATION DESIGN & MANAGEMENT

Transcritical CO₂ Energy in relation to ambient temperature

		Normal Daily Mean Temperature (°F)												
State	City	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Year Average
Florida	Miami	68.1	69.1	72.4	75.7	79.6	82.4	83.7	83.6	82.4	78.8	74.4	69.9	76.7
Arizona	Phoenix	54.2	58.2	62.7	70.2	79.1	88.6	92.8	91.4	86	74.6	61.6	54.3	72.8
Louisiana	Baton Rouge	50.1	53.5	60.3	66.6	74	79.7	81.7	81.4	77.5	68.1	59	52.4	67.0
California	Sacramento	46.3	51.2	54.5	58.9	65.5	71.5	75.4	74.8	71.7	64.4	53.3	45.8	61.1
North Carolina	Raleigh	39.7	43	50.7	59.1	67	74.7	78.8	77.2	71.2	60	51	43	59.6
New Mexico	Albuquerque	35.7	41.4	48.1	55.6	64.7	74.8	78.5	76.1	69.1	57.3	44.4	36.1	56.8
New York	New York	32.1	34.6	42.5	52.5	62.6	71.2	76.5	75.1	67.5	56.6	47.1	37.3	54.6
Kansas	Topeka	27.2	33.4	44.2	54.5	64.4	73.9	78.4	76.7	68.1	56.6	42.6	31.4	54.3
Colorado	Denver	29.2	33.2	39.6	47.6	57.2	67.6	73.4	71.7	62.4	51	37.5	30.3	50.1
Washington	Olympia	38.1	40.5	43.6	47.4	53.3	58.2	62.8	63.3	58.3	49.7	42.4	38	49.6
Minnesota	Minneapolis	13.1	20.1	32.1	46.6	59.3	68.4	73.2	70.6	61	48.7	32.5	18.7	45.4
Montana	Helena	20.2	26.4	35.1	44.1	52.9	61.2	67.8	66.7	56.1	44.8	30.9	21.4	44.0
Maine	Caribou	9.5	13	24.6	38.1	51.6	60.8	65.6	63.4	53.8	42.8	30.6	16.4	39.2

Simplified performance	Ambient (°F)	R744	R404A	NH3-Glycol	Operating Conditions:
assassment	33.8	7.59	4.02	3.93	COPs based on an MT load of 102,364 BTU/hr.
assessment	41	7.02	4.02	3.93	CO2 & R404A evaporating temp of 17.6°F with 10K
	50	5.43	4.02	3.93	Superheat (5k Useful).
Up to 50% more efficient in low	59	4.31	4.02	3.93	NH3 evaporating temp of 10.4°F with 1K Superheat.
ambient temperatures	68	3.29	3.76	3.76	CO2 Gas Cooler outlet temp of Ambient +2K & a sub-
	77	2.51	3.26	3.35	critical condensing temp of Ambient +5K (47.8°F Min)
Consider time at temperature	86	2.05	2.74	3.06	K404A & NH3 condensing temp Ambient +6K (75.2°F Min).
	95	1.6	2.38	2.80	

Transcritical CO₂ and the Industrial Future

- CO₂ is already used as a pumped secondary refrigerant in industrial refrigeration
- Transcritical variation A logical and manageable step
- Flooded and DX Transcritical choices
- Ice Rinks and Blast Freezers
- Transcritical should be considered as an option along with low charge Ammonia systems
- R404a HFC use with caution Legislation coming down the tracks. Don't create liabilities
- CO₂ Compressors getting bigger 1,700,000 BTU/hr (500 kW) Racks feasible and cost effective
- Decide on technology with a life cycle assessment of the application using local climate analysis no one size fits all

