

AMERICA Sphere business case

AMERICA ATANO Sphere business case natural refrigerants

June 16 & 17, 2016 - Chicago

Indu Johr Engi Los

Industrial End User Panel

John Scherer, Manager of Engineering

Los Angeles Cold Storage Company

NXTCOLD OXNARD, CA CASE STUDY

TYPICAL CENTRAL ENGINE ROOM FOR AMMONIA REFRIGERATION

FACTORY

FACTORY

TRAILER

POD FROM OUTSIDE

June 16 & 17, 2016 – Chicago ENTRY TO EVAPORATOR

#

COMPRESSOR POD

ELECTRICAL & CONTROL PANELS

EVAPORATOR FANS

EVAPORATOR COILS

DISTRIBUTED HIGH EFFICIENCY REFRIGERATION WITH ULTRA LOW AMMONIA CHARGE ELECTRONIC REFRIGERANT INJECTION CONTROL (ERIC)

CASE STUDY REPORT OBJECTIVES

SoCal Edison, Design and Engineering Services, *Report* ET13SCE7210:

- Ο technology as applied at the Lineage Facility.
- Determine baseline for the facility under existing conditions •
- Determine post retrofit under current operational conditions
- Determine post retrofit under optimum operational conditions
- Ο technology as applied at the Lineage Facility.
- Determine baseline for the facility under existing conditions ullet
- Determine post retrofit under current operational conditions
- Determine post retrofit under optimum operational conditions
- \bigcirc refrigeration.
- similar applications.

Determine what, if any, demand savings can be attributed to the NXTCOLD

Determine what, if any, energy savings can be attributed to the NXTCOLD

Assess the overall feasibility of the technology as it is applied to cold storage

Identify potential operational or non-energy benefit categories for use of the technology in

TABLE 1 – CURRENT OPERATION SAVINGS ANALYSIS

	NxtCold Performance Summary Current Operation Scenario																		
						Refrigeration		Remaining Energy											
			Cooling			Only		- Blast Freezing and			NXT						Demand	Energy	
			Load Ton-	Current	Diversity	Estimated	Meter	Remaining	Nxt Cold	Remaini	COLD	PLANT		New	Savings	Savings	Rate	Rate	
Month	Avg Tons	Hours	Hr	кw	Factor **	KWH	KWH	Refrigeration	Tons	ng Tons	KW/TON	KW/TON	NewKW	кwн	КW	кwн	(\$/kw)	(\$/KWH)	Savi
J	83.45	744	62,086	327	95%	231,389	382,963	151,574	62	10	1.59	3.92	137.81	102,532	189.56	128,857	\$ 14.88	\$ 0.08659	\$13
F	83.45	672	56,077	327	80%	175,997	270,833	94,837	62	10	1.59	3.92	137.81	92,609	189.56	83,388	\$ 14.88	\$ 0.08659	\$10
M	83.45	744	62,086	327	80%	194,854	759,210	564,356	62	10	1.59	3.92	137.81	102,532	189.56	92,322	\$ 14.88	\$ 0.08659	\$10
A	83.45	744	62,086	327	80%	194,854	874,959	680,105	62	10	1.59	3.92	137.81	102,532	189.56	92,322	\$ 14.88	\$ 0.08659	\$10
M	90.00	744	66,960	353	80%	210,152	980,918	770,766	62	28	1.59	3.92	208.43	155,070	144.65	55,082	\$ 14.88	\$ 0.08659	\$ 6
J	95.00	720	68,400	373	80%	214,671	1,592,723	1,378,052	62	33	1.59	3.92	228.04	164,190	144.65	50,481	\$ 14.88	\$ 0.13769	\$ 9
J	100.00	744	74,400	392	80%	233,502	1,069,224	835,722	62	38	1.59	3.92	247.66	184,257	144.65	49,245	\$ 14.88	\$ 0.13769	\$8
A	110.00	720	79,200	432	70%	217,496	771,789	554,293	62	48	1.59	3.92	286.89	206,560	144.65	10,936	\$ 14.88	\$0.13769	\$ 3
S	100.00	720	72,000	392	60%	169,477	391,347	221,870	62	38	1.59	3.92	247.66	178,314	144.65	(8,836)	\$ 14.88	\$0.13769	\$
0	90.00	744	66,960	353	80%	210,152	544,156	334,004	62	28	1.59	3.92	208.43	155,070	144.65	55,082	\$ 14.88	\$0.13769	\$ 9
N	83.45	720	60,083	327	80%	188,568	422,402	233,834	62	10	1.59	3.92	137.81	99,224	189.56	89,344	\$ 14.88	\$ 0.08659	\$10
D	83.45	744	62,086	327	50%	121,784	172,300	50,516	62	10	1.59	3.92	137.81	102,532	189.56	19,252	\$ 14.88	\$ 0.08659	\$ 4
		8,760				2,362,894	8,232,824	5,869,929								717,475			\$ 99

For this analysis, the diversity factor was developed in looking at the product supply. From Mid November thru February very little blast freezing occurs. The load for these months is ** Note primarily due to refrigeration. Since the cooling load in ton hours is only for the area covered by the Nxt Cold Unit, the savings is based only on the difference for that area.

#11

TABLE 2 – OPTIMUM OPERATION SAVINGS ANALYSIS

	NxtCold Performance Summary Optimum Operation Scenario																	
			Cooling		Discortitu	Refrigeration	Matar	Remaining Energy Blast	Not Cold	Bomoining	NYTCOLD	DIANT		Nour	Saulage	Environ	Domand	En our Pato
Month	Ave Tons	Hours	Hr	KW	Factor **	KWH	KWH	Refrigeration	Tons	Tons	KW/TON	KW/TON	New KW	KWH	KW	KWH	Rate (\$/kw)	(\$/KWH)
J	83.45	744	62,086	327	95%	231,389	382,963	151,574	83.45	-	1.59	3.92	132.68	98,716	194.69	132,672	\$ 14.88	\$ 0.08659
F	83.45	672	56,077	327	80%	175,997	270,833	94,837	83.45	-	1.59	3.92	132.68	89,163	194.69	86,834	\$ 14.88	\$ 0.08659
М	83.45	744	62,086	327	80%	194,854	759,210	564,356	83.45	-	1.59	3.92	132.68	98,716	194.69	96,137	\$ 14.88	\$ 0.08659
A	83.45	744	62,086	327	80%	194,854	874,959	680,105	83.45	-	1.59	3.92	132.68	98,716	194.69	96,137	\$ 14.88	\$ 0.08659
М	90.00	744	66,960	353	80%	210,152	980,918	770,766	90.00	-	1.59	3.92	143.10	106,467	209.98	103,685	\$ 14.88	\$ 0.08659
J	95.00	720	68,400	373	80%	214,671	1,592,723	1,378,052	95.00	-	1.59	3.92	151.05	108,756	221.64	105,915	\$ 14.88	\$ 0.13769
J	100.00	744	74,400	392	80%	233,502	1,069,224	835,722	100.00	-	1.59	3.92	159.00	118,296	233.31	115,206	\$ 14.88	\$ 0.13769
A	110.00	720	79,200	432	70%	217,496	771,789	554,293	110.00	-	1.59	3.92	174.90	125,928	256.64	91,567	\$ 14.88	\$ 0.13769
S	100.00	720	72,000	392	60%	169,477	391,347	221,870	100.00	-	1.59	3.92	159.00	114,480	233.31	54,997	\$ 14.88	\$ 0.13769
0	90.00	744	66,960	353	80%	210,152	544,156	334,004	90.00	-	1.59	3.92	143.10	106,467	209.98	103,685	\$ 14.88	\$ 0.13769
N	83.45	720	60,083	327	80%	188,568	422,402	233,834	83.45	-	1.59	3.92	132.68	95,532	194.69	93,036	\$ 14.88	\$ 0.08659
D	83.45	744	62,086	327	50%	121,784	172,300	50,516	83.45	-	1.59	3.92	132.68	98,716	194.69	23,067	\$ 14.88	\$ 0.08659
		8,760				2,362,894	8,232,824	5,869,929								1,102,938		

For this analysis, the diversity factor was developed in looking at the product supply. From Mid November thru February very little blast freezing occurs. The load for these months is primarily due ** Note to refrigeration. Since the cooling load in ton hours is only for the area covered by the Nxt Cold Unit, the savings is based only on the difference for that area.

#12

TABLE 3 – SAVINGS SUMMARY

NXTCOLD Savings Summary

										<u> </u>											
Month	То	tal Building Utilit	Ita				Current C	peration		Optimum Operation											
	ĸw	кwн		\$	KW Savings	KWH Savings	ļ	\$ Savings	% KW Savings	% KWH Savings	%\$ Savings	кw	кwн		\$	% KW Savings	% KWH Savings	%\$S			
J	1,351	382,963	\$	53,267	190	128,857	\$	13,978	14%	34%	26%	195	132,672	\$	14,385	14%	35%				
F	1,099	270,833	\$	39,808	190	83,388	\$	10,041	17%	31%	25%	195	86,834	\$	10,416	18%	32%				
М	2,772	759,210	\$	106,987	190	92,322	\$	10,815	7%	12%	10%	195	96,137	\$	11,222	7%	13%				
А	2,189	874,959	\$	108,332	190	92,322	\$	10,815	9%	11%	10%	195	96,137	\$	11,222	9%	11%				
М	2,712	980,918	\$	125,292	145	55,082	\$	6,922	5%	6%	6%	210	103,685	\$	12,103	8%	11%				
l	3,098	1,592,723	\$	265,406	145	50,481	\$	9,103	5%	3%	3%	222	105,915	\$	17,881	7%	7%				
l	2,635	1,069,224	\$	186,433	145	49,245	\$	8,933	5%	5%	5%	233	115,206	\$	19,334	9%	11%				
A	2,083	771,789	\$	137,266	145	10,936	\$	3,658	7%	1%	3%	257	91,567	\$	16,427	12%	12%				
S	1,154	391,347	\$	71,062	145	(8,836)	\$	936	13%	-2%	1%	233	54,997	\$	11,044	20%	14%				
0	1,483	544,156	\$	96,995	145	55,082	\$	9,737	10%	10%	10%	210	103,685	\$	17,401	14%	19%				
N	2,129	422,402	\$	68,252	190	89,344	\$	10,557	9%	21%	15%	195	93,036	\$	10,953	9%	22%				
D	732	172,300	\$	25,812	190	19,252	\$	4,488	26%	11%	17%	195	23,067	\$	4,894	27%	13%				
Totals		8,232,823.80	\$1	,284,912		717,475	\$	99,983	11%	9%	8%		1,102,938	\$	157,281	13%	13%				

Performance & Dependability

For excellence in performance & dependability we would like to recognize these companies who all came together to provide near perfect results.

AMERICA ATTACK AND A CONTRACT OF A CONTRACT business case natural refrigerants

June 16 & 17, 2016 - Chicago

Thank you very much!

