Residential $\mathbf{C O}_{\mathbf{2}}$ HPWH Results from Field Testing

Sanden Profile

Founded in 1943 / Revenue: \$2.8 billion / Employees: > 10,000 Global network: 54 sites in 23 countries, 3 sites in the US

Core technology

Cooling

Automotive

 June 16 \& 17, 2016 - Chicago

Project Overviews

\#1 : Replacing Electric Storage \&

 HPWH's - 4M unit/year potential market- Homes across the NW from the Coast to Montana; Min family size 4, Maximum of 7
- Partners -Washington State University, NEEA, BPA, Avista, Energy Trust of Oregon, Ravalli Electric Coop \& Tacoma Power
\#2 : Demand Response Comparison
- What is the energy storage capacity in long-term field use when subject to high hot water use : 130+ Gallons per 24 hours
- Partners: Washington State University, NEEA, Bonneville Power Authority, PNNL \& DOE

Sanden HPWH

Standard HPWH

- R134a/R410a
- Indoor installation
- Noise >50dB
- Electric backup element required
- Cools home even in the winter

Field Test Outcome

| Sample |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Site | | Sampled |
| :---: |
| Days |
| (n) |\quad kWh/Day $\left.$| Total |
| :---: |
| Household |
| Hot Water |
| (Gal/day) |\quad| Mean OAT |
| :---: |
| (${ }^{\circ}$ F) |\quad| Minimum |
| :---: |
| OAT (${ }^{\circ}$ F) | \right\rvert\,

Units were monitored for Energy and Water use, along with multiple temperature sensors in the system
The energy needed to heat the cold water supply for each flow event was calculated as:
Supply Water BTU = Volume (Supply water) $8.34 \times$ (Avg. hot water temp. - Avg. cold water temp.) $\times 1$ $\mathrm{Btu} / \mathrm{l}$./oF, where $8.34 \mathrm{lb} . / \mathrm{gal}$ is the density of water

A Field Energy Factor (Energy Factor being the official DOE Water Heater Descriptor) was calculated: FEF = Energy Contained in Total Useful Hot Water/Total Energy In

Data from installation through 10/31/2014 June 16 \& 17, 2016 - Chicago

Usage vs Energy

Daily Flow and Energy

Field Test Results

kWh per 100 gallons of Hot Water used

Typical Hot Water Usage

Hot Water use is a case of two peaks and a two troughs - If a system can operate in the troughs but still supply Hot Water for the peaks then it has the potential for off peak power or renewable power usage

амегіса Sphere natural refrigerants June 16 \& 17, 2016 - Chicago

Demand Potential

Approx. 130 Gallons used per 24 Hour Period using varying Flow Rates and Length of Draw

System potential test : Outdoor unit is turned off for varying periods of time to determine if the system can meet Hot Water demand

Over Supply Schedule

	Off Time	On Time
Day 1	None	None
Day 2	5PM	Midnight
Day 3	4PM	Midnight
Day 4	3PM	Midnight
Day 5	2PM	Midnight
Day 6	1PM	Midnight
Day 7	Noon	Midnight

[^0]
System Power Usage

This graph shows the unit in standard operation responding just to the draw pattern \& tank temperature Energy use 5.05 kw , operating time 5 hours, 139 Gallons

Demand Power Usage

This graph shows the unit was shut off for 12 hours
Total Energy use 5.63 kw, no reduction in HW performance

Byproduct of Demand Operation

Because of the nature of CO_{2} Water Heating in a Transcritical System efficiency almost works backwards - The colder the water supplied to the Gas Cooler, the higher the efficiency
Conclusion turning off the unit for a period of time cools the tank and improves COP

Demand Response

- Yes
- •No

Tank Volume

- 40 Gallons
- 80 Gallons

Field Tested Validations
The Sanden SANCO $_{2}$ HPWH

- Provides Domestic Hot Water to any home in Ambient temperatures down below $-15^{\circ} \mathrm{F}$
- Energy Per Gallon of Hot Water from the field test shows
- SANCO_{2} system uses 0.0475 kwh/gallon
- Electric Resistance Water Heater uses 0.22 kwh/gallon
- Synthetic Refrigerant HPWH uses 0.1 kwh/gallon
- Can produce over 135 gallons of Hot Water per day, even with a 43 Gallon Tank size, and can
operate with a 12 Hour shutdown period

Water Heater

LAUNCHING JULY 2016

- ETL certification obtained, Energy Star and AHRI certification ongoing, product in US inventory.....

Next product

- Space Heating using Hot Water, standalone and in Combination with DHW
Barriers to the market for this product
- UL/ETL approval - Standard and testing required
- SNAP - Currently CO_{2} is not permitted as a refrigerant for Space cooling or Heating

John Miles

Sanden International USA
Facebook : Sanden Water Heater
john.miles@sanden.com

Twitter : @SandenCO2HPWH

Thank You

[^0]: Delivering Excellence

