

Existing retail stores from R22 to CO₂ Energy saving and economic efficiency of CO₂UEI system case study

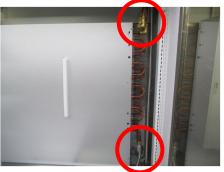
20 February, 2017-Tokyo Toshiaki Hosono

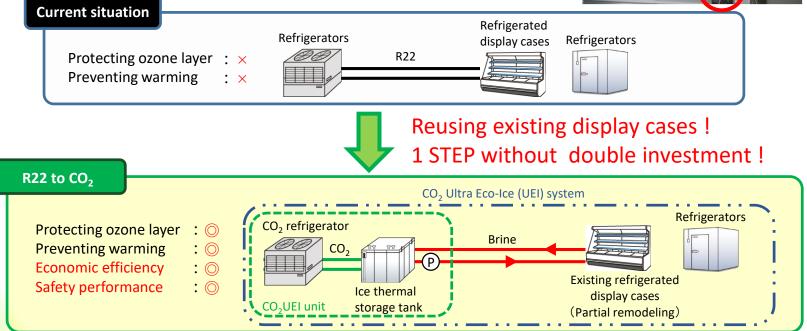
Company profile YAMATO Co. Ltd.

- 1. Founding : 1945
- 2. Capital stock : 5 billion yen
- 3. Employee(full-time) : 800

(March, 2016)

- 4. Main business
- Design and installation for air-conditioning and refrigeration facilities
- Development of environmental technology such as thermal storage and so on
- Operation management and maintenance of facilities


Headquarter (Maebashi, Gunma)


Background

Using R22 at more than about 50% supermarkets in Japan Changing to CO₂ is one of the business challenges

Changing R22 to CO₂ by partial remodeling of existing display cases

Changing evaporator header of existing display cases for brine

Development purposes of CO₂ Ultra Eco-Ice(UEI) unit

Development of Brine-ice thermal storage equipment with CO_2 refrigeration " CO_2UEI unit" in " CO_2UEI system"

<required performance>

- Quality and performance guarantee as thermal storage equipment (Management of production, test run and so on at own factory)
 - Uniform management of CO₂UEI system control
 - Acceleration of legal process
 - Shortening of system installation period
 - Reduction of installation space

and so on

Simulating "CO₂UEI system" operation at assumed retail store using R22, based on the results of "CO₂UEI unit" operation

⇒ Evaluating energy saving and economic efficiency, compared to "CO₂ DX cooling system"

CO₂UEI unit

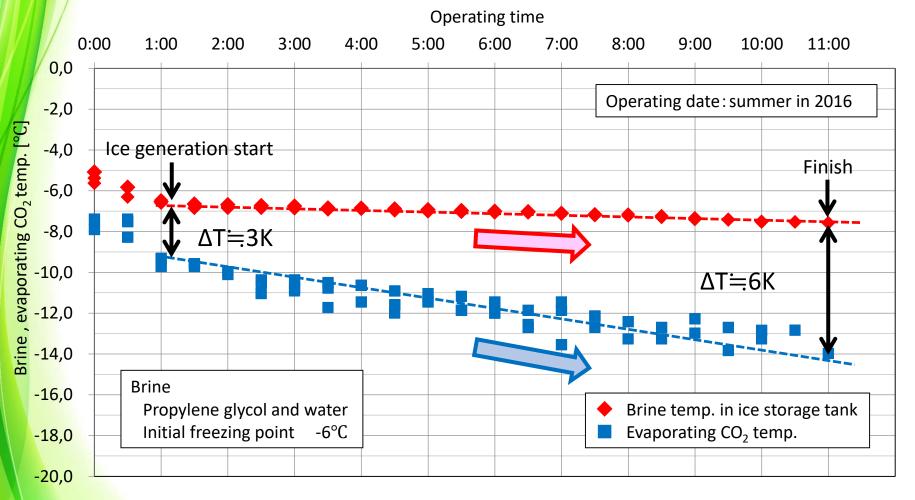
<mark>M</mark>ain instruments

- CO₂ refrigerator(Panasonic)
- ·Ice thermal storage tank
- CO₂ ice-maker
- Filter dryer
- Heat exchanger
- Accumulator
- Suction filter
- Brine feed pomp
- Power and control board

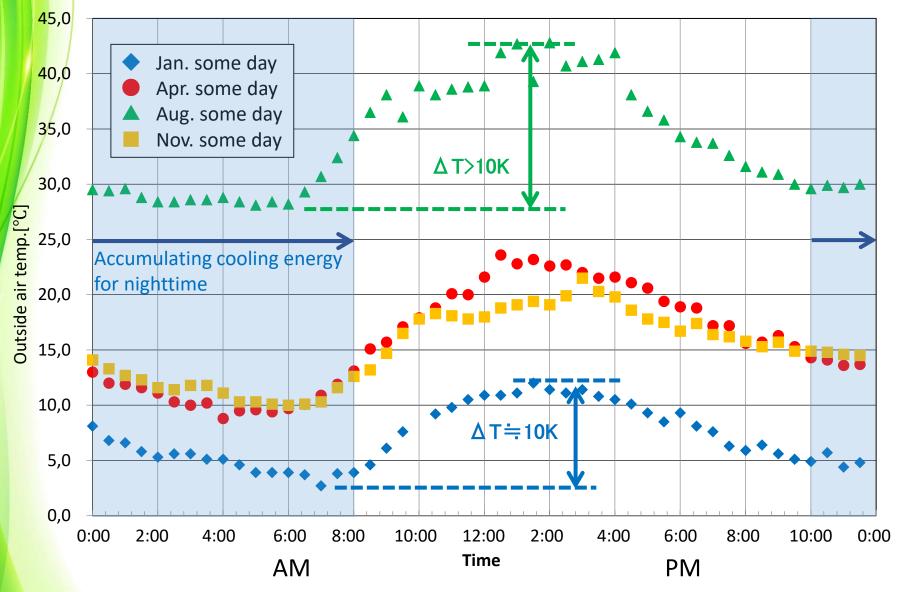
(Optimum operation management controller)

<u>CO₂UEI unit (10HP CO₂ refrigerator)</u>

Field test at almost 40°C outdoor temperature in summer ⇒Establishment of operation technique and resolution of issues as Brine-ice thermal storage refrigerator

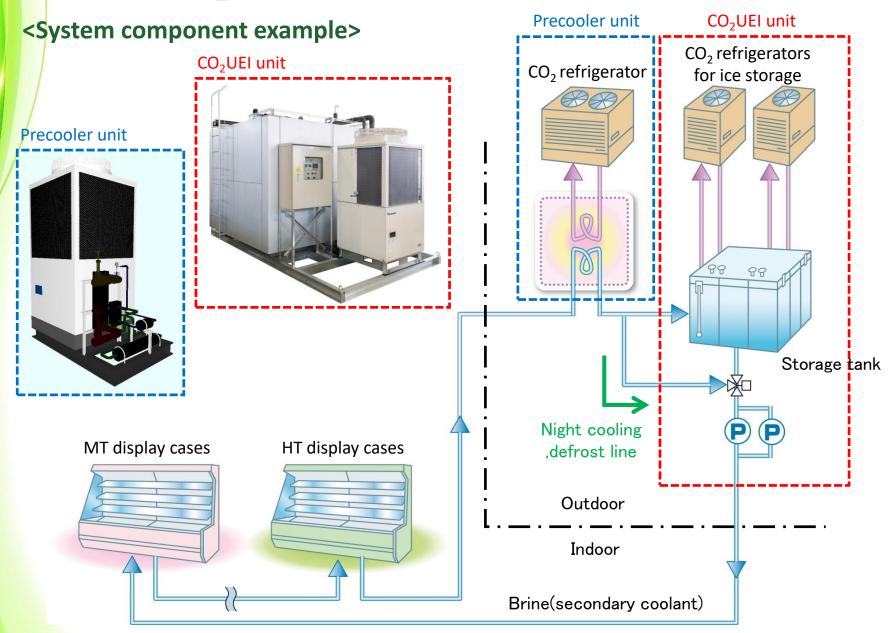

Quality and performance guarantee as thermal storage equipment by management of production, test run and so on at own factory Connecting brine pipe to the showcases after the installation of the unit

CO₂UEI unit operation for the simulation


Brine-ice thermal storage operation

- Increasing of PG conc. and decreasing of brine freezing point by ice generation
- Decreasing of heat transfer performance between brine and CO₂ by ice generation
- ⇒Brine and CO₂ temp. curves are almost constant throughout the year

COP increasing by continuous refrigerators operation during nighttime at low temp.



Actual outside air temp. for the simulation

(Date: Kanto region 365 days per 30 minutes in certain year)

CO₂UEI system component

Characteristics of CO₂UEI system (thermal storage system)

No.	Energy saving	Economic efficiency	
		Running cost	Initial cost
1	Continuous refrigerators operation during nighttime at low temp. Refrigerators COP increasing		
2	Defrost with higher temperature brine by cooling load in the system		
3		Using cooling energy accumulated during nighttime Reducing refrigerator capacity during daytime	
4			Reducing necessary refrigeration capacity during daytime
5			Reusing partial remodeling existing display cases, refrigerators
6			Cost up by ice thermal storage tank and unit installation

<Other characteristics>

• CO₂UEI and precooler unit with CO₂ pipe is installed outside

Refrigerant leakages by any possibility have no influence on the inside of building

• Backup by installation of plural refrigerators for thermal storage

Simulation conditions

<Existing retail store conditions>

	 Floor space 	: 2,000 m ²
	 Store hours 	: AM9:00 – PM9:00
	 Cooling target 	: refrigerated display cases, refrigerators
	/	(except freezing display cases, freezers)
1	 Cooling load 	: 140kW (indoor condition 25°C, 60%)
	 Installation region 	: Kanto region

CO₂ DX cooling system CO₂ UEI system Conditions **80HP** CO₂ refrigerator 120HP 25m³ Ice thermal storage tank Brine feed pomp 3.7kW × 1 Display cases **New** CO₂ display cases, **Existing remodeled** Freon display cases, refrigerators refrigerators refrigerators Outdoor air temp. Actual outdoor air temp.

Evaluation results of CO₂ UEI system energy saving and economic efficiency

	CO ₂ DX cooling system	CO ₂ UEI system
Electricity usage	100%	80~90%
Running cost	100%	75 ~ 80%
Initial cost	100% New CO_2 display cases, refrigerators	75~85% <mark>Existing remodeled</mark> Freon display cases, refrigerators

Using CO₂DX cooling system as the base

Thank you very much!