

Global Market Trends of Danfoss Perspective

Inderpal Saund

Global Overview

Europe

- 50% of large packs CO₂Transcritical
- Semi plug-in systems, refrigerant choice moving towards R290

North America

- CO₂ Transcritical growth, but still uncertainty
- Semi plug-in, present but still developing
- Regulatory action slow down, market factors continue to push natural refrigerants

Latin America, China, India, Africa

- Developing countries on a longer time frame
- Intentions on making the jump from R22 to CO₂ (skipping HFC's)

Local Overview

Australia & New Zealand

- CO₂ Subcritical systems since 2004
- Transition from Subcritical to Transcritical systems begun 2008
- Today multiple Transcritical CO₂ systems (15)

MOVING FORWARD

- Advanced CO₂ Transcritical systems
- More efficient than HFC's in all climates
- First cost coming down to parity with traditional systems

Looking to the future

- F-gas?
- US EPA SNAP?
- What about hydrocarbons?
- What will the price be for HFC and HFO?
- What about flammability?

If we just knew the crystal ball would work much better

Our crystal ball

- Europe F-Gas is decided, moving toward HFC phase out, most of the world following.
- » US EPA SNAP Will likely be on hold for a time, CARB and perhaps other states moving forward
- » Australian Phase down on HFC's
- HC charge limitations will be raised from 150 g to 500 g (maybe 1 kg)
- CO₂ Transcritical will be the dominant refrigeration system for centralized food retail systems
- Other solutions will also be in the market, Semi-plug in / water loop and HFO solutions.
- The solution for AC systems remains unclear and may be regional

CO₂ Transcritical Technology Development Continues

Ejector technology

- Bring cost down over time
- Reduce energy consumption

Next Steps

- Heat recovery
- Integrated Systems w/ Air Conditioning
- Flooded Systems

Danfoss Multi Ejector

System	Energy saving VS. R404a	Compressor saving VS. Booster
Booster	-11%	0%
Parallel compression	7%	15%
Gas ejector	10%	18%
Liquid & gas ejector	22%	27%

Tabel 1: Potential energy savings by using parallel compression with gas ejector only or liquid & gas ejector. Comparisons are made at 32°C.

Pacific CO₂ Transcritical Journey

Within the Pacific region Danfoss Began the journey back in 2007. Since then we have been involved in a number of projects which has given us a good basis to know what works and what doesn't.

But as they say you never stop learning !!

Looking forward to the next evolution in Transcritical CO₂ systems for the Pacific Region.

coles

Danfoss Mobile Training Unit

Coming to Australia in August 2017

Features:

- Three CO₂ Transcritical Modes:
- Booster System
- Parallel Compression System
- Multi-Ejector System
- Controller training stations (Pack, Case and Front End)
- Charging/filling/servicing training station (safety, procedure etc.)
- Simple one stage system with control system training station

ENGINEERING TOMORROW