AUSTRALIA ATTACA

TRANSCRITICAL CO₂ IN AUSTRALIAN **SUPERMARKETS – A REALITY**

Mike Baker AJ Baker & Sons

AUSTRALIA ATNO

TRANSITION TO TRANSCRITICAL

- » Drakes Angle Vale, SA - First Generation
- » Coles Coburg North, Vic Second Generation, Parallel
- » AJ Baker & Sons
 - 10 sites completed
- » Legislation

GWP/Natural Refrigerants

- Australian & World Legislation promoting low

ATMOsphere Australia/ Sydney / 2 May, 2017

TRANSCRITICAL BOOSTER SCHEMATIC

Ref	Component
1	Low stage (LT) comp
2	High stage (MT) comp
3	Oil Separator & oil return system
4	Gas cooler
5	High pressure regulating valve
6	Liquid receiver
7	Receiver pressure reg (flash gas) v/v
8	Expansion device
9	System evaporators

City	Avg # days >30ºC / yr
Perth	76
Brisbane	70
Sydney	54
Melbourne	30

Western Australia

• Perth

10 x Transcritical > 300 Cascade

AJ Baker Australian installations

Store	tore LT load & Ref # Comp		MT load & # Comp		Location	GCOT Control Method		
Ref					Location	Туре	Refrigerant	Adiabatic Sprays
Α	26kW	x 3	111kW	х З	Perth	DX PHE	R134A	No
В	4kW	x 1	77kW	x 3	Melbourne	Water / PHE	R290 / Water	Yes
С	19kW	x 2	77kW	x 3	Perth	DX PHE	R134A	Yes
D	29kW	x 3	118kW	x 4	Perth	DX PHE	R513A	Yes
Е	29kW	x 3	121kW	x 4	Perth	DX PHE	R513A	Yes
F	4kW	x 1	81kW	x 3	Sydney	Water / PHE	R290 / Water	Yes
G	4kW	x 1	81kW	x 3	Perth	Evap cooling on gas cooler intake		N/A
Н	4kW	x 1	79kW	x 3	Brisbane	DX PHE	R134A	Yes
	20kW	x 3	148kW	x 5	Perth	DX PHE	R513A	Yes
J	4kW	x 1	81kW	x 3	Melbourne	Evap cooling on gas cooler intake ** Parallel compression ** 60bar liquid system		N/A
	+ 3 more systems on order / under design							

- Sites utilising PHE for high pressure desuperheating
- Secondary system of adiabatic water sprays
- Two sites trialling evaporative pre-cooler system on gas cooler inlet

ATMO GAS COOLER OUTLET TEMPERATURE CONTROL

- **High Pressure Desuperheating**
 - Increases overall efficiency when Tamb>20°C
 - Controls compressor discharge T & P
 - Trials in service with a number of refrigerant options and designs: HFC, HFC replacement, HC; DX / water
 - A simple & effective solution in warm climates

ATMO Sphere Gas Cooler Outlet Temperature Control

Adiabatic Sprays

- Effective for secondary GCOT control after desuperheater
- Can reduce GCOT by 3°C.
- Both proprietary and local manufactured units on trial.
- Water quality can be an issue, plus overspray

ATMO Sphere Gas Cooler Outlet Temperature Control

ATMOsphere Australia/ Sydney / 2 May, 2017

Log graph		Notes
 106.7 °C - L1 - Discharge temperate 38.6 °C - L1 - Gas cooler outlet temperate 90.7 barg - Gas Cooler pressure 40.5 °C - L1 - External temperature 	ure	
	᠂᠕᠆᠕᠕	<u>га</u> """"""""""""""""""""""""""""""""""""
	Mar and	
2 2017/01/26 13:55:44 13:57:19	17:08	20:34

NATURAL REFRIGERANT SYSTEM

ATMO Sphere Gas Cooler Outlet Temperature Control

Evaporative Pre-Cooling

- Results have shown can be used without high pressure desuperheating
- Water usage is minimal
- Ideal where water quality is poor (no direct water contact with gas cooler coil)
- Only suitable in low RH climates

FTE – Full Transcritical Efficiency

- Uses liquid overfeed on MT cases to feed LT cases
- Has the benefit of reducing liquid temp to MT cases, and then MT comp discharge Temp.
- LT cases also aided by cooler liquid temp
- Oil return is uninterrupted in entire circuit
- Minimal need for MT suction liq injection
- Works both in sub & trans critical states.
- Europe studies \rightarrow 10% gain; Australia \rightarrow 7%

ATMOsphere Australia/ Sydney / 2 May, 2017

FTE – Full Transcritical Efficiency

IT Patent Pending: IT 102016000049985 AU Patent Issued: AU2016101310

NNOVATIVE THINKING

ATMOsphere Australia/ Sydney / 2 May, 2017

FTE – Full Transcritical Efficiency

13 units in operation:

- Italy
- Germany &
- Australia

AUSTRALIA ATMO Sphere **OTHER ENERGY SAVING INITIATIVES**

Suction temperature optimisation

- Installing high performance display case evaporators
- Medium temp suction temperature floated up to -2.8°C.
- Coil diff temp reduced to 2K.
- Still achieving M1 (even MO) case conditions

OTHER ENERGY SAVING INITIATIVES

Defrost on Demand

- Utilising the intelligent control system
- LT case defrost intervals of up to 14 days
- No degradation of product quality
- Case TEC reduced by 3%

OTHER ENERGY SAVING INITIATIVES

Defrost on Demand

HACCP graph	Log graph		Notes			
	1					
	min:-20 max:-	min:-20 max:-19.2 °C - Air off temperature (Sm)				
	min:-25.9 max:-2	4.8 °C - Evaporation temperature (tEu)				
				and the second		
		•••••••				
			·····			
المعام الملبيا الملبيا الملها المله		in held Labourth				
Frankl. C. Strand inter Mankleiner, andle unter Mekalitier	About at Months and America at Ac	and Minter Alternation	A freed and the merid and from the			
under hunder hunder	I may have a start	minim	Under have			
1						
4 17/0	2017/02/10 12:21:3	4 13:16:30 17/02/14	17/02/19	i		
	-					
Customize						
		NA	TURAL REFRIGER	ANT SYSTI		

CONCLUSIONS

- climates
- The number of installations in Australia is growing
- No major penalty in system efficiency or complexity
- Simple plant designs making the technology able to be understood by mechanics
- and other commercial installations.

TC CO₂ is being designed to allow operation in high ambient

AJB: 3 on order, expect 3 to 4 per year. By 2020: > 25

It has to be the system design of choice for supermarkets

. 3 3))))

Natural

.... 0)))) ARRENT ARRENT ARRENT

ATMOsphere Australia/ Sydney / 2 May, 2017

AJ Baker Australian installations

AUSTRALIA ATANA ATANA

