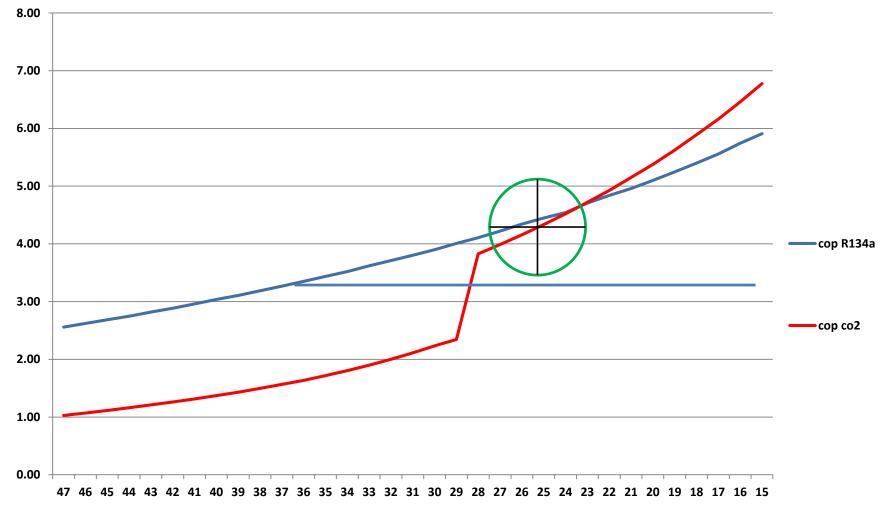
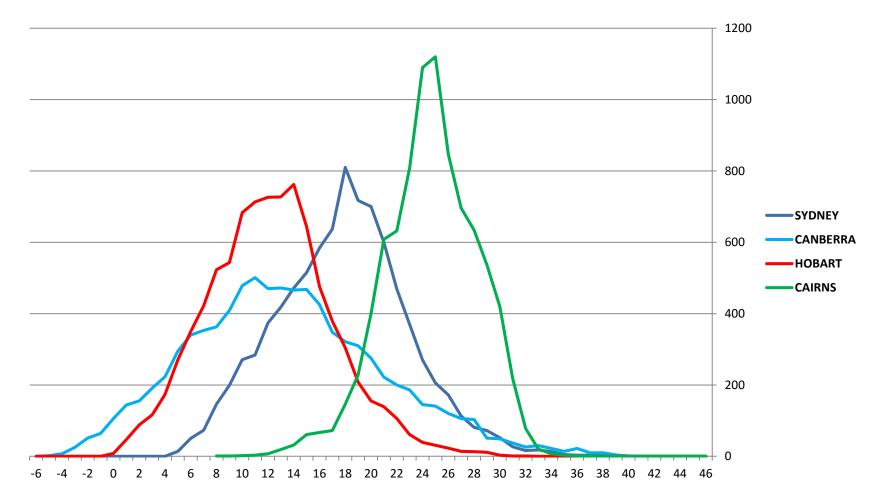
Trans-critical CO₂ an index of possibilities

Presented by Ian Wilson Strathbrook Industrial Services


TODAYS TOPICS

- Performance comparison R404a / cascade / trans-critical
- Trans critical compressor performance with seasonal change
- Two stage CO₂ System cascade v compound
- Parallel compression
- Ejector systems
- CO₂ direct expansion for air conditioning
- High demand cooling systems

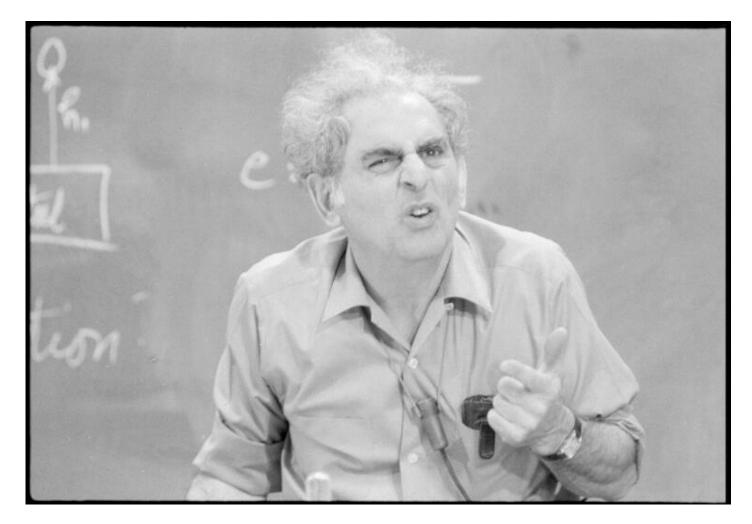
Performance comparison – R134a -R404a / cascade / trans-critical


- straight R404a single stage DX system use 20.6% more power on a freezer then an R404a / CO_2 cascade systems (light & easy project 2006)
- R134a use 5% less power than R404a in cool room application
- R134a /CO₂ cascade freezer will use (approximately) 25% less power then R404a. (75% of the power is used by the high stage)
- CO₂ / CO₂ cascade freezer will use >40% less power than a R134a / CO₂ cascade freezer if the high stage CO₂ system never runs in the supercritical phase
- CO₂ cool room compressor will use 35% less power than R134a cool room if the CO₂ compressor never runs in the super critical phase (-4sst with 45deg C sct for R134a 25 deg C sct for CO₂)
- A CO₂ / CO₂ / NH₃ freezer / cool room system uses 50% less power than a conventional R404a system of the same capacity and duty, if it is done in the best possible way. (using multiple interconnected and optimized systems).

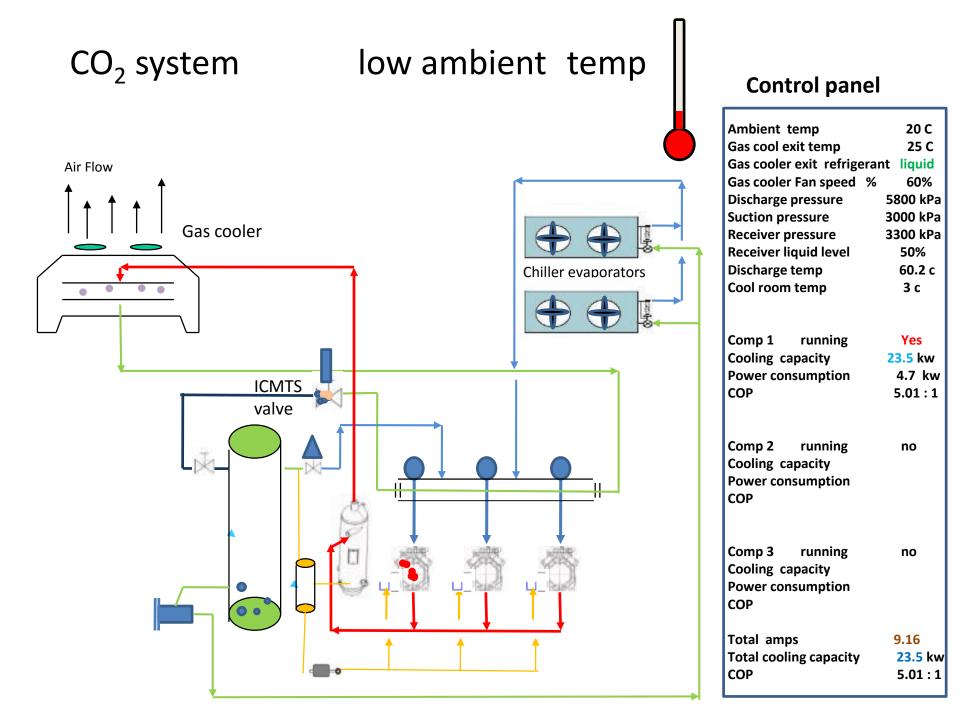
COP R134a v CO₂ with changing condensing temperatures

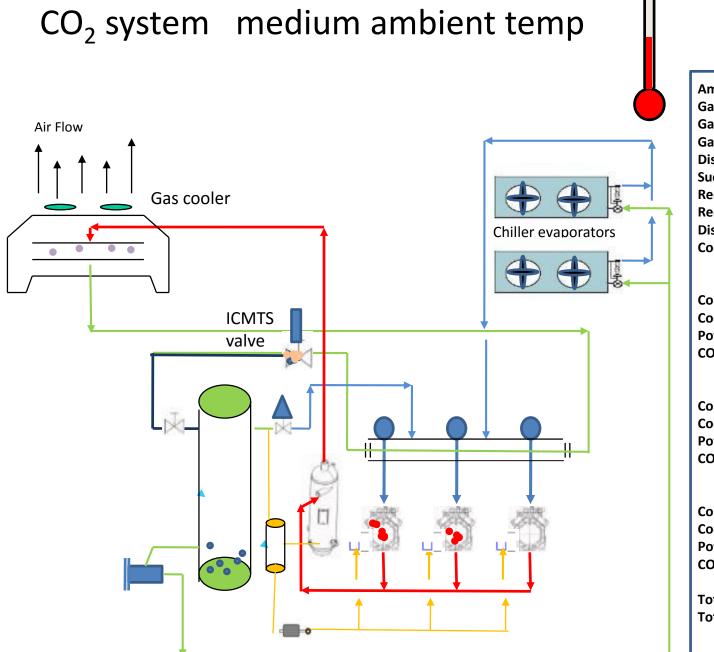
-7sst with decreasing condenser outlet temperatures

Trans-critical compressor performance @ different ambient conditions

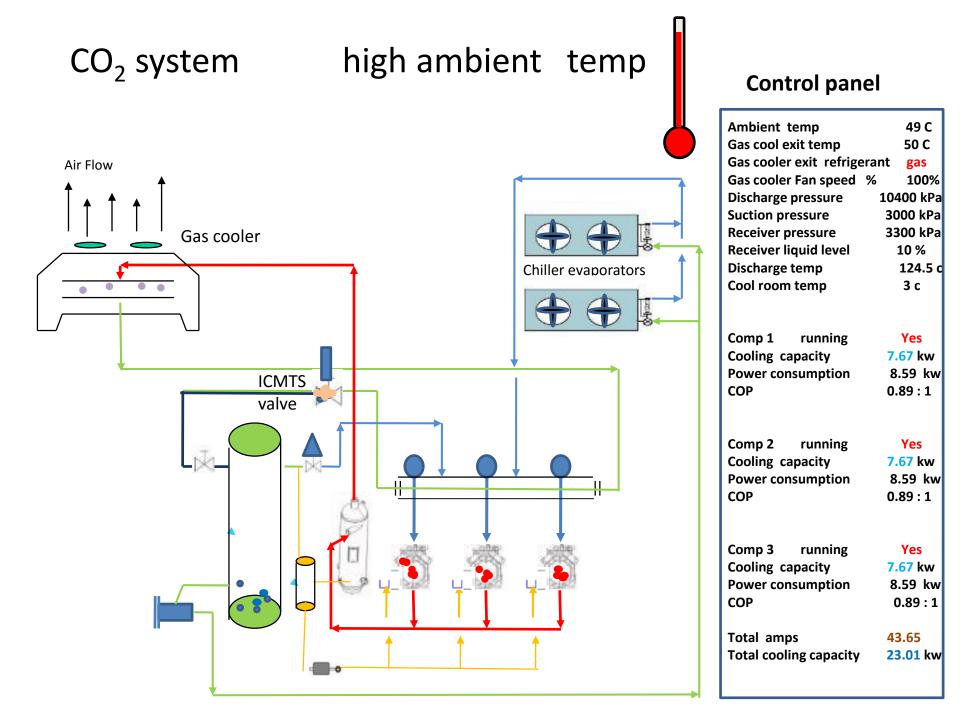


Total Hours in one year at each temperature for 4 Australian east coast cities @ Air port weather stations


Trans-critical compressor performance @ different ambient conditions


- Base line COP R134a 2.92 -4sst & 45 sct
- CO2 compressor COP 4.73 -4sst & 20 sct
- CO2 compressor COP 3.54 -4sct & 25 sct
- CO2 compressor COP 2.47 -4sct & 30 sct ?
- CO2 compressor COP 1.92 -4sst & 35 gas out
- CO2 compressor COP 1.51 -4sst & 40 gas out
- CO2 compressor COP 1.19 -4sst & 45 gas out
- CO2 compressor COP 0.83 -4sst & 50 gas out

Why is it so


professor julius sumner miller

Control panel

Ambient temp	34 C
Gas cool exit temp	35 C
Gas cooler exit refrigera	
Gas cooler Fan speed %	-
Discharge pressure	8600kPa
Suction pressure	3000 kPa
Receiver pressure	3300 kPa
Receiver liquid level	30%
Discharge temp	102.6c
Cool room temp	3 c
Comp 1 running Cooling capacity Power consumption	<mark>Yes</mark> 15.2 kw 7.41kw
СОР	2.05: 1
Comp 2 running Cooling capacity Power consumption COP	<mark>Yes</mark> 15.2 kw 7.41kw 2.05: 1
Comp 3 running Cooling capacity Power consumption COP	no
Total amps Total cooling capacity	25.6 30.2 kw

Two stage CO₂ System cascade v compound

Compound system have more than one compression stage using the same refrigerant and oil, in a pipe network that will allow the gas and oil to travel to any part of the system.

Originally designed for optimal energy efficiency across multiple temperatures.

Slightly Better COP than cascade and potentially less expensive to build

More issues with oil systems .

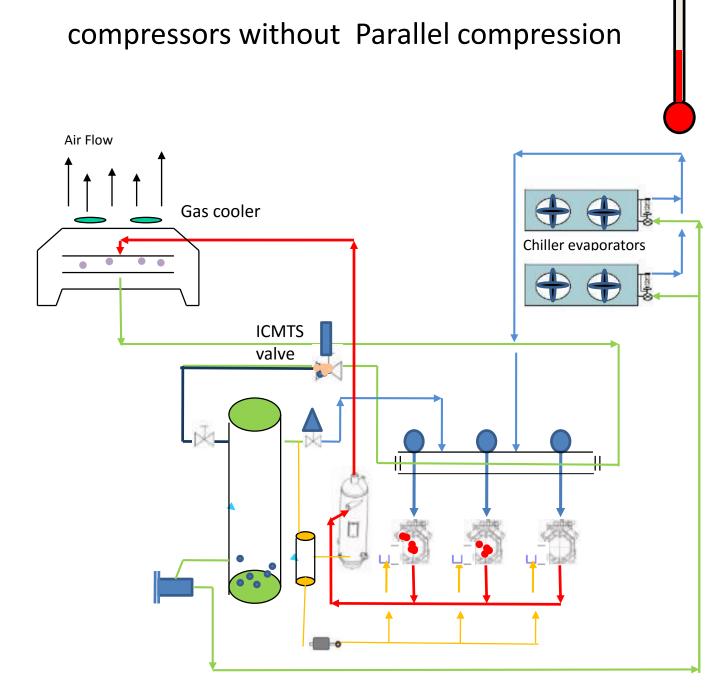
low stage will generally circulate less oil than the high stage , so low stage compressors need to be modified by the manufacturer to increase the oil carry over so they don't fill up with oil. (otherwise they overfill with oil and smash up the piston rod assemblies)

This results in greater oil volume in circulation and high fowling factors in evaporators (drop in heat transfer)

If you have a leak you can loose the lot.

Two stage CO₂ System cascade v compound

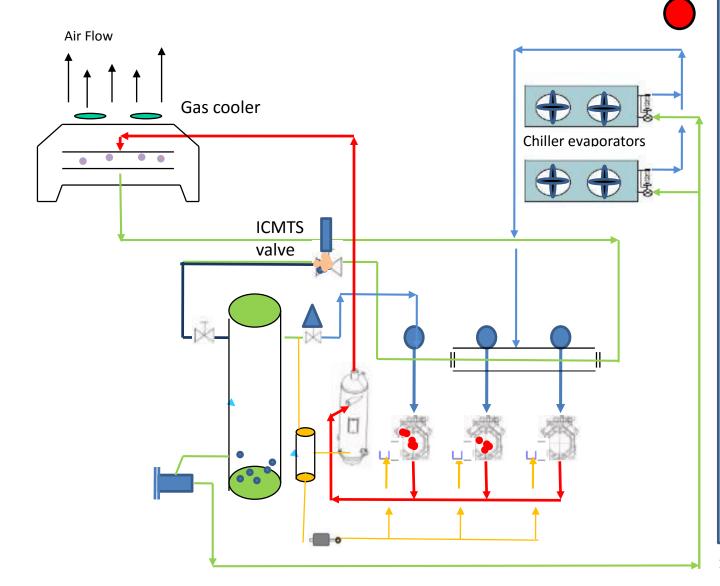
Cascade system use multiple refrigerants in separate refrigeration systems tied together with a heat exchanger to achieve the result.


The refrigerant can be optimized for the application so performance can be very good. (CO_2 on both stages works well)

Easier to understand for service technicians

Slightly less efficient than compound systems due to the heat exchangers overlapping temperatures

Less problems with oil


Less exposure to gas loss with two separate gas charges

Control panel

Ambient temp Gas cool exit temp Gas cooler exit refrige Gas cooler Fan speed Discharge pressure Suction pressure Receiver pressure Receiver liquid level Discharge temp Cool room temp	-
Comp 1 running Compressor capacity Power consumption Evaporator capacity COP	Yes 27.92 kw 21.27kw 14.7 kw 1.31 : 1
Comp 2 running Cooling capacity Power consumption Evaporator capacity 20 kw COP	Yes 27.92 kw 21.27kw 14.7 kw 1.31 : 1
Comp 3 running Cooling capacity Power consumption	no 0 kw 0 kw
Total amps Total compressor capa Total evaporator capac Total COP	-

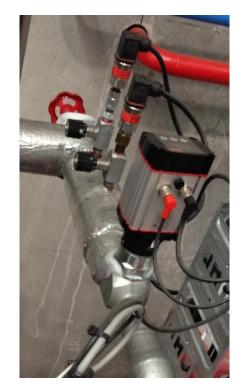
compressors with Parallel compression

Control panel

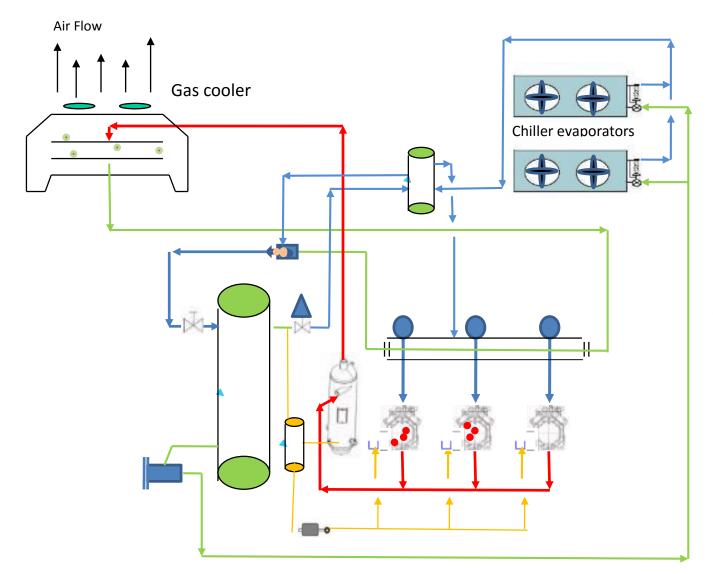
Ambient temp	39 C
Gas cool exit temp	40 C
Gas cooler exit refrige	rant <mark>gas</mark>
Gas cooler Fan speed	% 100%
Discharge pressure	9000 kPa
Suction pressure	2800 kPa
Receiver pressure	3800 kPa
Receiver liquid level	20 %
Discharge temp	108 c
Cool room temp	3 c

(smaller compressor selected)

Comp 1 runr	ning <mark>Yes</mark>
Compressor cap	acity 20.7 kw
Power consump	tion 11.1kw
СОР	1.86 : 1


Power consumption	Yes 9.1kw 21.27kw 1.37 : 1
Comp 3 running Cooling capacity Power consumption	no 0 kw 0 kw
Total amps Total compressor capacity	<mark>56.04</mark> 49.8
Total evaporator capacity kw	29.1
Total cop	1.54 : 1

16.5% increase but still very poor


Ejector systems

Can we improve the operation and energy consumption of a CO₂ refrigeration system by including a ejector in place of the ICMTS valve ?

CO₂ system with ejector

Pros and cons

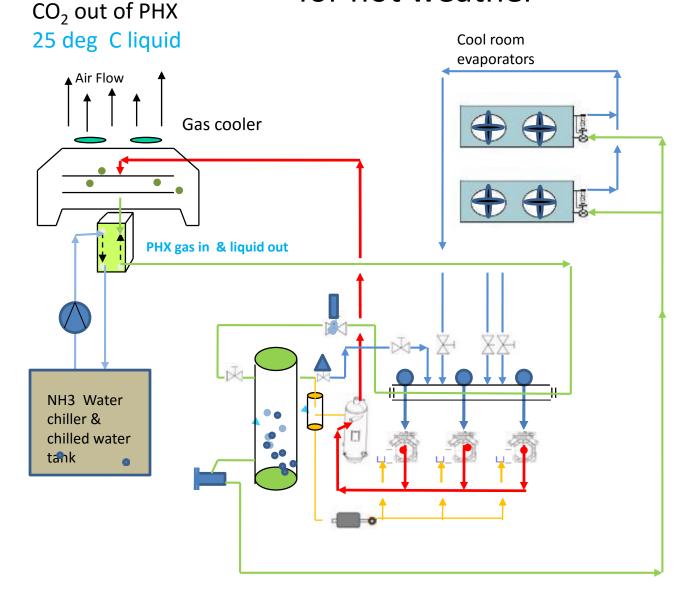
Increase in compressor performance due to slightly higher suction pressure (5%)

Possible to run a flooded evaporator which increases the evaporator performance

More complexity More parts

many many design options

This technology is still evolving but will be a standard item in the future


Doesn't add to the performance when the condensing temperature is low

Air conditioning with Trans critical CO₂

- 40 year old R22 plants provide a COP OF 4:1
- We generally operate air conditioning in warm weather
- Trans critical CO2 compressor system with technology that allows it to run sub critical @ +5.5sst & +25 condensing have a COP of 5.65 :1
- evaporative condensers design for Sydney is 35 deg C outlet temperature which would be a COP of 3:1
- At 45 deg gas cooler (air cooled) exit the COP is 1.8 :1
- Clearly it may be convenient to include the A/C system , but its not always the best solution to run a system that uses twice the power of the old one we left behind.
- An ammonia chiller with operating conditions of +1 sst / 35sct chilling water will have a COP OF 5.5 : 1 (Open drive piston compressor)

CO₂ into PHX 40 deg C as gas

CO₂ system with high demand cooling for hot weather

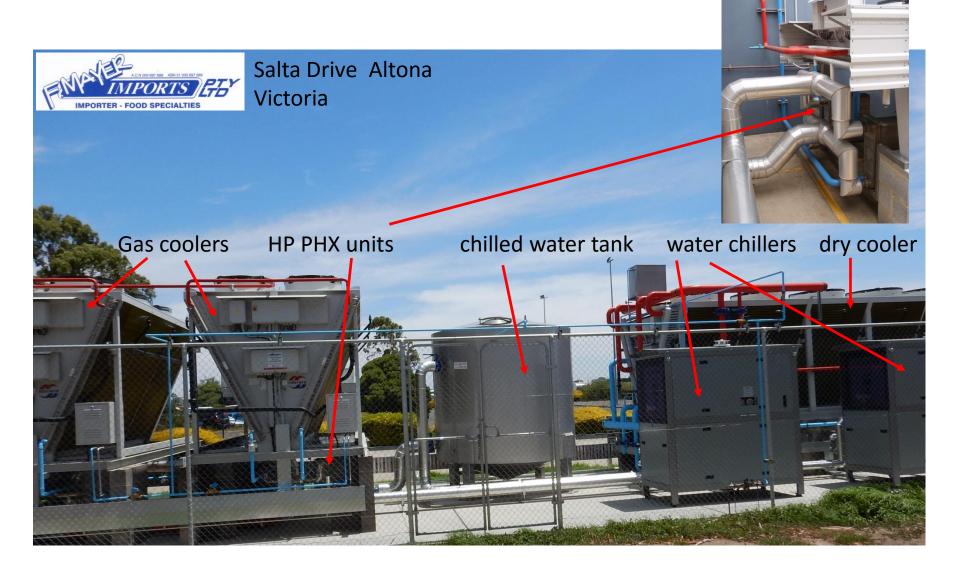
-		
Ambient temp	39 C	
Gas cool exit temp	40 C	
Gas cooler exit refrigerant gas		
Gas cooler Fan speed	% 100%	
Discharge pressure	5800 kPa	
Suction pressure	3000 kPa	
Receiver pressure	3300 kPa	
Receiver liquid level	20 %	
Discharge temp	65 c	
Cool room temp	3 c	
Comp 1 running	Yes	
Compressor capacity	23.5 kw	
Power consumption	4.7kw	
COP	5.01: 1	
Comp 2 running	Yes	
Compressor capacity	23.5kw	
Power consumption	4.7kw	
COP	5.01:1	
Comp 3 running	no	
NH ₃ Compressor with	VSD	
Cooling capacity	18.85kw	
Power consumption	1.77 kw	
COP	10.64 : 1	
(+15SST & +35SCT)		
Total compressor capacity 47 KW		
Total power consumption 11.17kw		
Total cop	4.2:1	

Note - Ammonia chiller only runs in hot weather COP @ 20 Ambient 5:1

CO₂ system with high demand cooling for hot weather

Salta Drive Altona Victoria

- FOOD SPECIALTIE


EQUIPMENT Designed & built by

 Warm glycol defrosting

 from low stage heat rejection

CO₂ system with high demand cooling for hot weather

CO₂ system with high demand cooling for hot weather Ammonia chiller package

Designed and built by

weatherproof design, optional heat recovery, Danfoss controls, valves & VSD, self aliening coupling, fully safety system, easy to understand piping arrangement

250kW cooling capacity +15 SST / +35 SCT COP > 10 : 1 Refrigerant charge 4.9kg Oil charge 7kg

52kW per kg of ammonia

- Automatic oil return
- Unloading plus VSD operation
- Ammonia gas sensor
- Anti freeze and flow safety controls

Thankyou for your attention

