

Kawasaki centrifugal chiller using water as a refrigerant M▲ZTURBO[™]

June 6th 2017 Kawasaki Heavy Industries, Ltd. Machinery Division Hayato Sakamoto

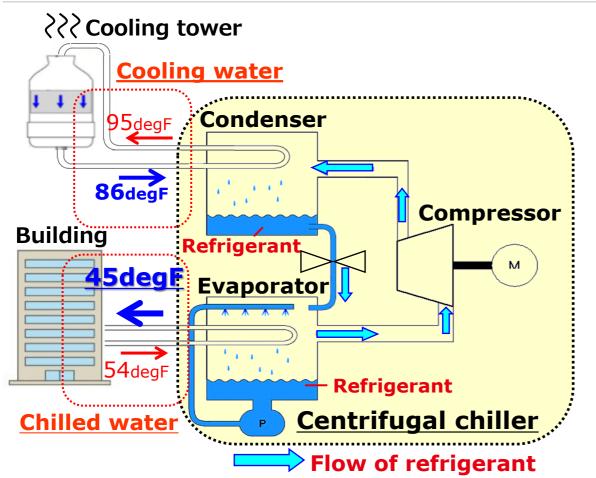
1. Introduction of MiZTURBO

2. Estimated CO₂ emission in San Francisco

2

© 2014 Kawasaki Heavy Industries, Ltd. All Rights Reserved

1. Introduction of MiZTURBO


2. Estimated CO₂ emission in San Francisco

3

© 2014 Kawasaki Heavy Industries, Ltd. All Rights Reserved

Principle of Centrifugal chiller

Evaporator

- Refrigerant is heated by returned chilled water and evaporates.
- ② Returned chilled water is chilled by evaporative latent heat of the refrigerant.

Refrigerant : Liquid -> Vapor

Condenser

- ① Compressed vapor of the refrigerant is cooled by cooling water and condenses.
- ② Cooling water is heated by latent heat of the refrigerant.

Refrigerant : Vapor -> Liquid

	Common chiller	MiZTURBO
Refrigerant	HFC	Water

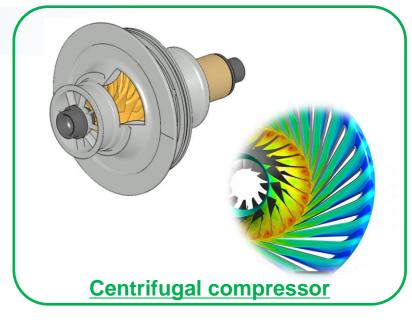
M[°]ZTURBO[™]

Inverter Control popul	Cooling capacit	У	100USRt (352kW)
<u>Control panel</u>	Power consum	otion	69kW
	Refrigerant		R718(water)
	Chilled	Inlet	54degF (12degC)
	Water temp.	Outlet	45degF (7degC)
	Cooling Water temp.	Inlet	86degF (30degC)
		Outlet	95degF (35degC)
	Motor drive		Inverter
Outer casing	Power supply		3Ф, 400/440V (50/60Hz)
	Size		2.5m x 2.5m x 2.6m
	Weight		8.0 ton
Breaker box	Intended applic	cation	Air conditioning

 * MiZTURBO can supply the chilled water at higher temperature up to 68degF, and be applied to other applications such as process cooling
Compressor, Motor, Evaporator and Condenser are in the outer casing.

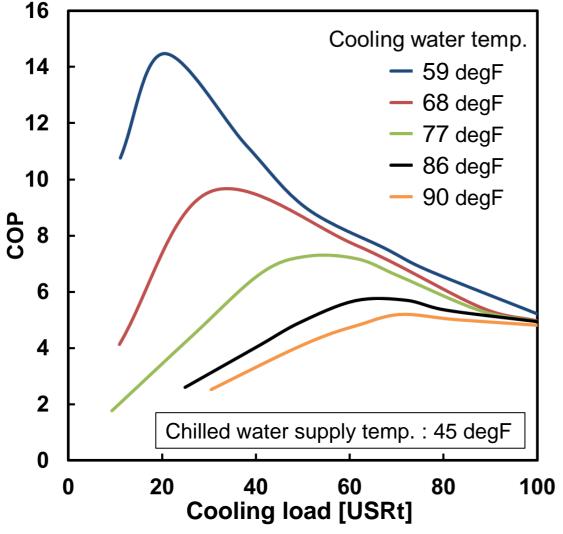
5

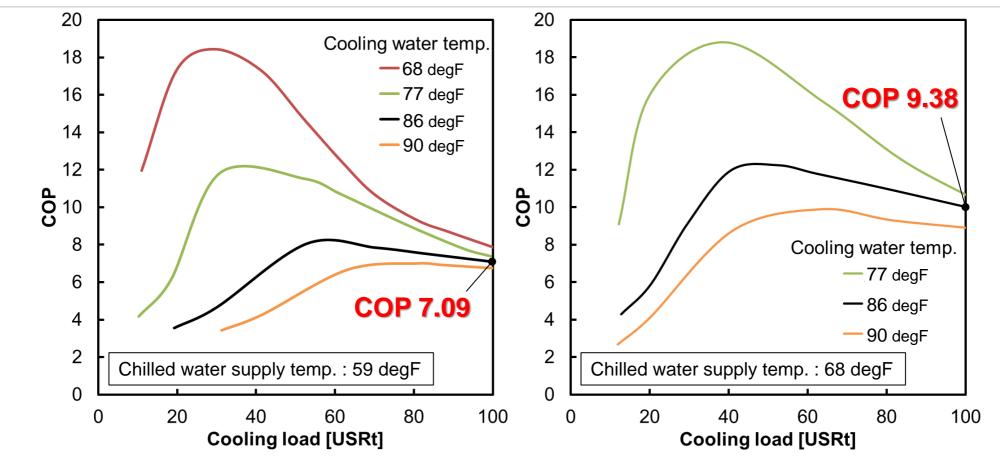
Features


Water refrigerant

Zero emission of HFC

High efficient performance


- Development of the high efficient compressor under low pressure and high pressure ratio
- Low power consumption


Performance - 45degF supply -

- COP(capacity[kW]/input power[kW])
- 5.10 at 100%
- Higher at a partial load
- Operatinal range
 - 10%~100% at less than 77degF of cooling water temperature
- IPLV(Integrated Part Load Value)
 - 8.0 (AHRI 551/591)
 - 7.4 (JIS B 8621)

Comparable performance to the other centrifugal chillers

Performance - 59degF & 68degF supply -

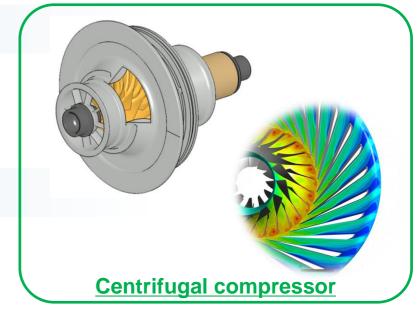
 MiZTURBO shows higher COP for 59-68 degF supply. Possible application : Air conditioning for data center Air conditioning system combined with desiccant Process cooling etc.

Features

Water refrigerant

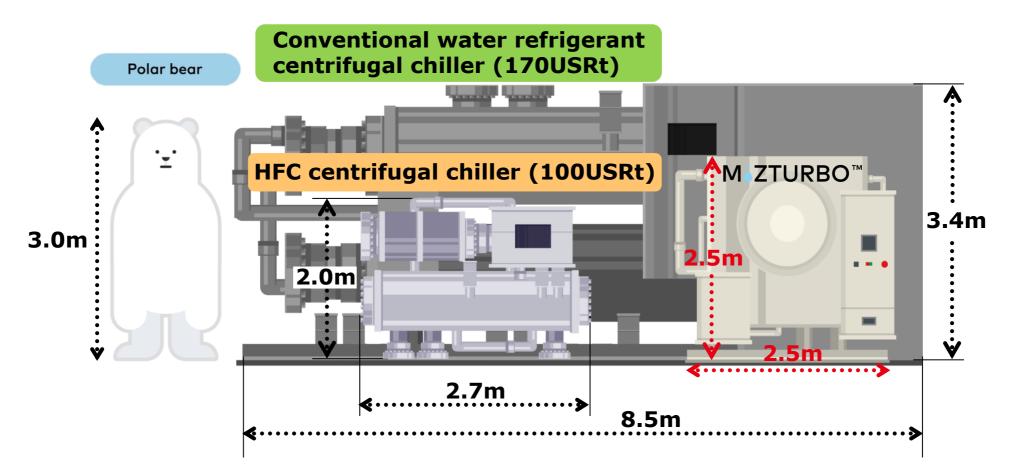
Zero emission of HFC

High efficient performance


- Development of the high efficient compressor under low pressure and high pressure ratio
- Low power consumption

Compact

- Development of the core components
- Optimization of their layout


Alternative to existing chillers

Compact

- Conventional water refrigerant centrifugal chiller is extremely large because of high specific volume.
- MiZTURBO is as compact as the existing chillers by optimum arrangement of components.

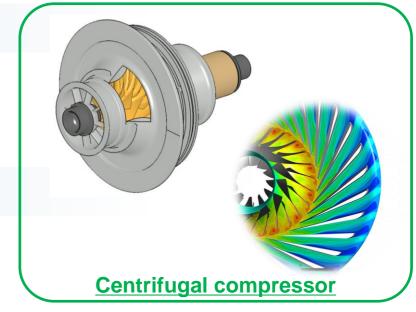
Features

Water refrigerant

Zero emission of HFC

High efficient performance

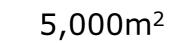
- Development of the high efficient compressor under low pressure and high pressure ratio
 - Low power consumption

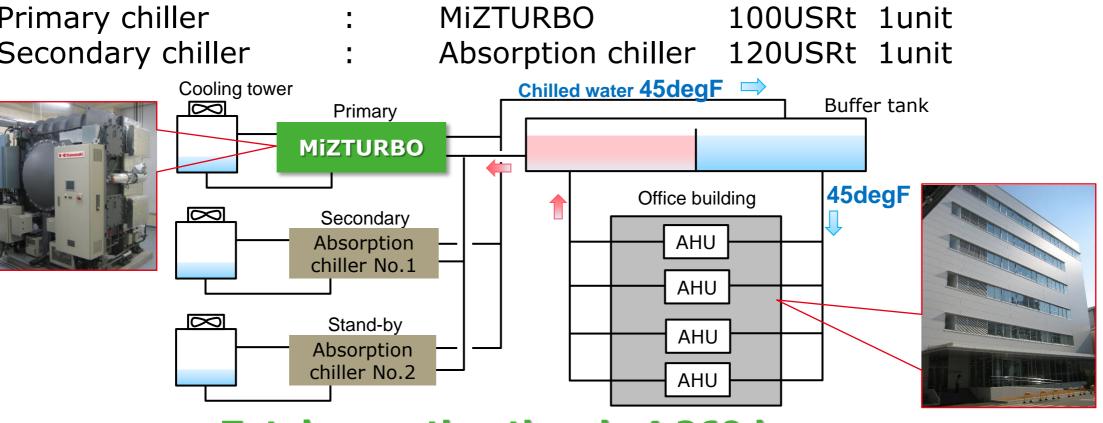

Compact

- Development of the core components
- Optimization of their layout
- Alternative to existing chillers

Oil-free

- The compressor is driven by the high speed motor
- Auxiliary system for oil is not necessary




Actual operation in Japan

1

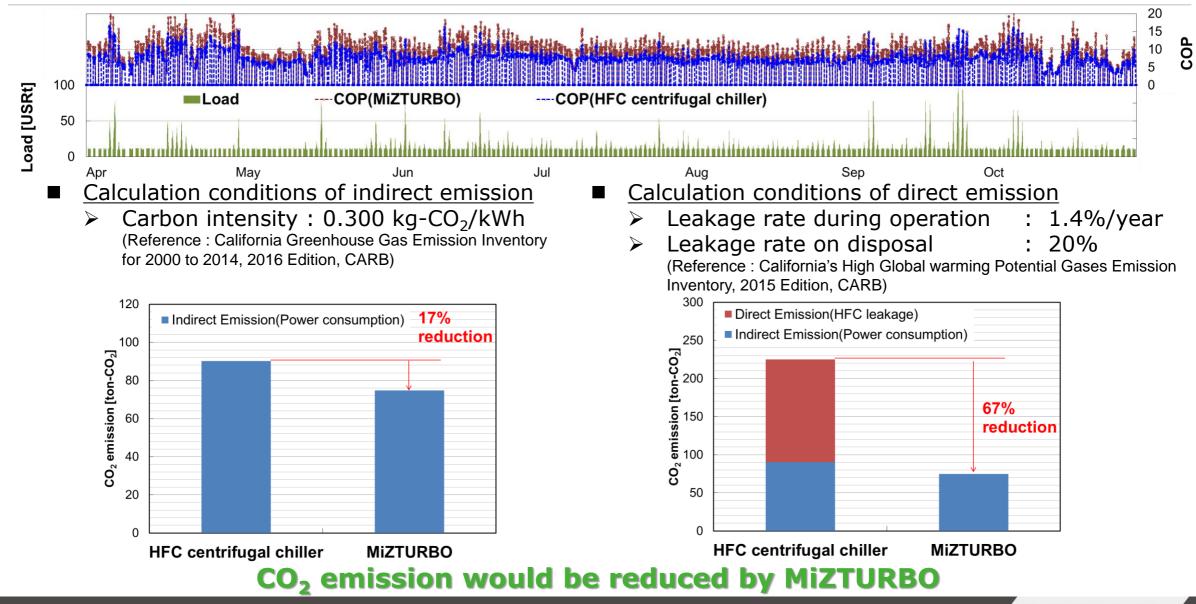
MiZTURBO has been used for an air conditioning in Kawasaki's Kobe works in Japan since 2013

- Floor Area
- Primary chiller Secondary chiller

Total operation time is 4,260 hours.

1. Introduction of MiZTURBO

2. Estimated CO₂ emission in San Francisco



Calculation conditions

9. (9)			
A second by	Location	San Francisco	
	Weather history	Jan 1 st 2016 – Dec 31 st 2016	
	Collected data from	Ambient temperature	
*	weather history	Dew point temperature	
	(every 1 hour)	(Cooling water temp. = Dew point + 9degF(5degC))	
The hard	Operation period	The month when maximum ambient temperature > 77degF(25degC)	
had a man of 2.	operation time	6:00AM – 9:00PM	
Alle A The second	Operation year	15 years	
100 (38degC)	10		
-Ambient temp. 90 -Cooling water temp. 40 40 30 Jan Feb Mar Apr May Jun Jul Aug Sep	Oct Nov Dec	O Ambient Temp.(Max.) O Operation period	

Result - Comparison of CO_2 emission -

Kawasaki

Powering your potential

Summary

Introduction of MiZTURBO

Features : water(R718) refrigerant, High efficient, compact and oil-free

➤ 4,260 hours operation in Japan

CO₂ emission in America

 CO_2^- emission would be reduced in San Francisco by MiZTURBO

Availability in America

The followings are the items to be solved.

- > Compliant with the standards, regulations, UL certification etc.
 - Investigation of UL certification is going to be completed by the end of 2017
- > Cooperation with customers and governments to create a path of introduction
 - Pilot plant, subsidy etc. to increase the acknowledge and accelerate the uptake of MiZTURBO

Thank you very much!

