

No Good Refrigerant

LEAKS !!!

	ATMO
AMERICA	sphere

Refrigerants VS System Performance

Isphe	re	Frick RWFII 177 (1800 RPM)	
sprie	Tons (TR)	HP/Ton	100% (HP/Ton)
Ammonia	95.3	1.373	100
R22	108.0	1.342	98
R507	127.3	1.422	104
Propane	100.3	1.361	99

- R507 4% less efficient than Ammonia but 27% more capacity
- Propane 1% more efficient than Ammonia with 5% more capacity
- R22 2% more efficient than Ammonia with 8% more capacity
- R507 Greatest Tonnage

Vilters 440 16 cylinder increasing suction pressure from 10.31 psi (-20°F) to 13.32 psi (-15°F) improves HP/Ton by 8% 2-4% improvement by changing refrigerant is not important in system performance

Refrigerant	Toxicity and Flammability	
Ammonia	B2L	
R507 & R22	A1	
Propane	A3	
R1234	A2L	

Toxic and somewhat flammable Too regulated

Not toxic but flammable Not yet too regulated

Not toxic some flammable Toxic fumes if burned Environmental issues Regulated – Kigali

Not toxic somewhat flammable
Very expensive
Poor for low temperatures
-12.8°F boiling point
Very high CFM/ton

CO2:

HFCs:

HFOs:

Potentially attractive HP/Ton unknown Equipment not yet available Very High Pressure Critical Temperature 88°F

SAMPLE OF 29 PUBLIC REFRIGERATED WAREHOUSES

(Hank Bonar)			
	Average	Range	
Size (cubic feet)	5.3	0.31 - 26.5	
Tonnage (tons)	557	67 - 2200	
No. of Compressors	8	3 - 24	
Average Age of 5 Worst (years)	32	18 - 50	
Average Age of 5 Best (years)	25	18 - 50	
kWh/ cubic feet	1.54	0.5 - 4.21	

• Efficiency varies tremendously – almost 8.5 to 1

• If above 1.6 kWh/ cubic foot – look for improvements

• Older plants not significantly less efficient

Best Solution

- Minimize amount of refrigerant Package Systems Secondary refrigerants
- No Leaks System design and Maintenance
- Automated control system with monitoring and shutdown

Charge Size

- Refrigeration system uses:
 - Volume (FT³) not LBS
 - Compressor
 - Pipes
 - Heat Exchangers
 - Vessels
 - Etc.
- Density (LB/Gal) determined charge size

Refrigerant Density – Liquid

	LB/Gallons	LB/FT ³	%
Propane	4.13	50.8	100
Ammonia	5.05	37.7	122
R507	8.84	66.0	214
R22	10.00	75.0	243

Propane reduces system charge by 22% from Ammonia and 143% from R22

Condensing Heat = Evaporating + Compressor

Vilter 440 = 79 Tons + 31.2 Tons

$$= 72\% + 28\%$$

Compressor COP

$$= \frac{79 \text{ Tons}}{31.2 \text{ Tons}} = 2.53 \text{X}$$

• Key: Good condensers Good evaporators

Perfect Cycle

$$COP = \underline{T_E} = \underline{477} = \underline{477} = 4.54$$

T_C-T_E 550-445 105

Evaporating temp = $-15^{\circ}F = 477R$

Condensing temp = $+90^{\circ}F = 582R$

Efficiency of compression = 2.53 = 56%4.54 Lower head = 4.54 = 77%

(3 condensers vs. 1 condenser)

Difference between condensing temperature and evaporating temperature determine efficiency.

Brazed Condensers Kelvion C/O X 20-160 Charge

Summary of Performance

1)	Price Each	\$6,600
		<u>X3</u>
	Cost of Three	\$19,800

1) Plus Valves, Fittings, Mounting Bracket, and installation.

1) Performance	Condensing Pressure

- A) One 83F 150 PSI
 - TD $83^{\circ}F-67^{\circ}F = 16^{\circ}F$
- A) Three $70^{\circ}F \ 122 \ PSI \\ 70^{\circ}F 67^{\circ}F = 3^{\circ}F$

Heat rejected to water = $\frac{1,680,000 \text{ BTU/HR}}{350 \text{ GPM X } 8.345 \text{ LB/GAL X } 1 \text{ BTU/LB X } 60$

 $9.59^{\circ}F = 10^{\circ}F$

Well water into condenser (57°F) exits at 67°F

	FT ³
Volume of Refrigerant/Heat Exchange	.821
X 3 Heat Exchangers	<u>X3</u>
Volume of Three Heat Exchangers	2.463
Volume of Vapor X 88% Year	2.167
Volume of Liquid X 12%	.296

Weight of R22: .296 X <u>75LBS/FT³</u> X 2.167 X <u>2.56LBS/FT³</u> = 27.7 \cong 28 LB Charge

Summary	
Cost	\$19,800
Charge	28 LBS
TD (3)	3°F
No Gaskets	
Redundancy	

New Warehouse

Liquid Desiccant Equipment

ATMO sphere Liquid Desiccant Refrigeration System Basic Schematic

Propane's Comeback André Patenaude Accelerate America March 2017

Cons:

>>Subject to local authorities having jurisdiction (fire and building codes)

Regulations make the decisions