

Business Case for Natural Refrigerants

Simplifying the convertion to the R290 Rugal

Market influences

DOE 2017

Mandated legislation driving for higher efficiency

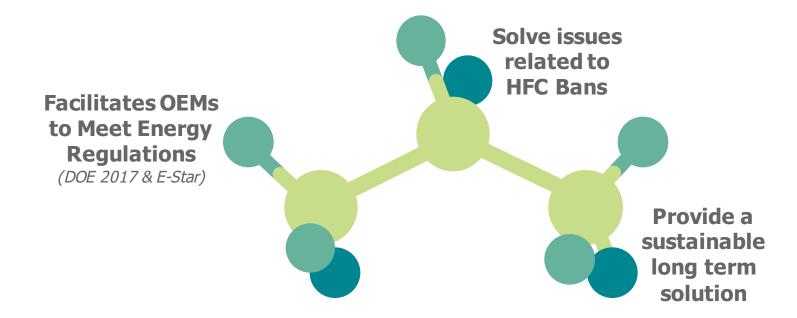
ENERGY STAR

Voluntary program for efficiency

EPA REFRIGERANT BAN

Eliminates current high GWP refrigerants

Impact



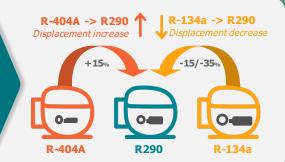
Improve efficiency

Look at Alternate Refrigerants

The R290 solution

Challenges of R290

Challenges of R290


Converting Cabinet to R-290 Step 1

▼1A

1 \(\rightarrow\) Converting cabinet to R-290

SELECT THE PROPER COMPRESSOR & SWAP

Match capacity of existing compressor: +/- 5%

2

INSTRUMENT SYSTEM

Temperatures

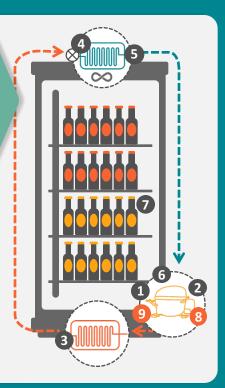
- 1 Suction Line
- 2 Discharge Line
- 3 Condenser Out
- 4 Evap In
- 5 Evap Out

- 6 Shell
- 7 Slugs

Pressure

- 8 Discharge
- 9 Suction

4


RUN SYSTEM TO SEE RESULTS

3

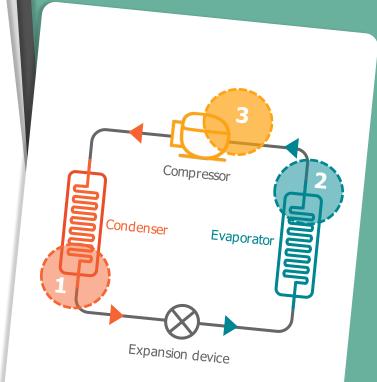
CHARGE SYSTEM

Start with 35% of original HFC charge or no more than 150g

Was pull down time adequate?

Check if slugs meet
NSF temperature
requirements

• 1. Subcooling
Should be between ~2-5°F



2. Evaporator Superheat Should be between ~5-7°F

3. Compressor Superheat

Should be ~10-15°F above SST at minimum


Converting Cabinet to R-290 Step 3

embraco

Increment the charge in 2-5g intervals

EXPANSION DEVICE OPTIMIZATION

Adjust length and/or diameter of capillary tube

TXV: 1/4 turn increments

RE-RUN TESTS AND READJUST AS NEEDED

NOTE: adjusting refrigerant charge and cap tube length will fight with each other - Balance is critical (also for Energy efficiency)

Converting Cabinet to R-290 Step 4

44

ISSUE: NOT ABLE TO ACHIEVE 150g CHARGE LIMIT

3

RE-RUN TESTS

1

REDUCE THE INTERNAL VOLUME OF YOUR CIRCUIT

2

VOLUME REDUCTION SHOULD BE PURSUED ALSO ON THE EVAP, BUT THIS CAN HAVE IMPACT ON THE CAPACITY AND EFFICIENCY

> SELECT A SMALLER INTERNAL VOLUME CONDENSER

REDUCE TUBE DIAMETER (e.g. 1/4" tubes) ~30%

REDUCTION

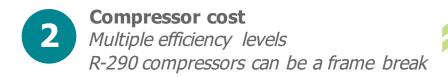
CAN BE

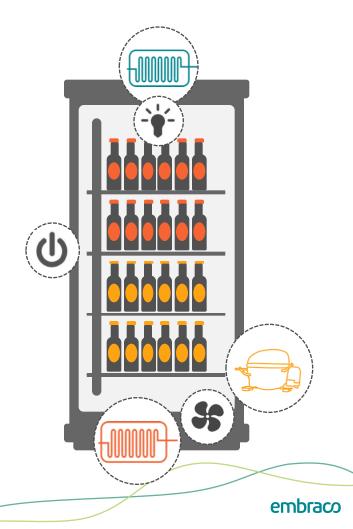
EXPECTED

Examples of cabinet conversion

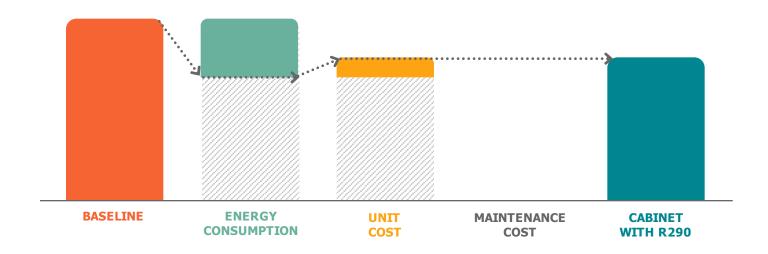
APPLICATION TYPE	COOLER VERTICAL 25cu.ft		FREEZER 7cu.ft		ICE MAKER 100lb/day	
Compressor Model	EMT6160Z	EMC3119U	FFU130HAX	EMC3130U	NEK6181GK	FFU160UAX
Compressor displ. [cm3]	6.76	4.5	10.61	6.93	7.28	7.95
Refrigerant	R134a	R290	R134a	R290	R404A	R290
Refr charge [g]	200g	70g	370	90	240	100
Energy Saving [%]	+20%		+32%		+30%	
Condenser volume [%]	-20%		=		-50%	
Evaporator volume [%]	=		=		=	
Exp device/mass flow [%]	-15%		TXV	Cap tube.	=	

Challenges of R290




Material Cost Impact

Non sparking type components
Fan Motors and blades
Switches
Lights
Miscellaneous Devices



4 Refrigerant cost tends to lower

End-users TCO Breakdown

Thank you Questions

embraco