

A Case Study of the CO₂ Systems in Whole Foods Market Northern California Region

A Case Study of the CO₂ Systems in Whole Foods Market Northern California Region

Tristam Coffin, LEED AP Sustainable Facilities Coordinator, Whole Foods Market

> Tom Wolgamot, PE, LEED AP BD+C, CPMP Principal, DC Engineering

Agenda

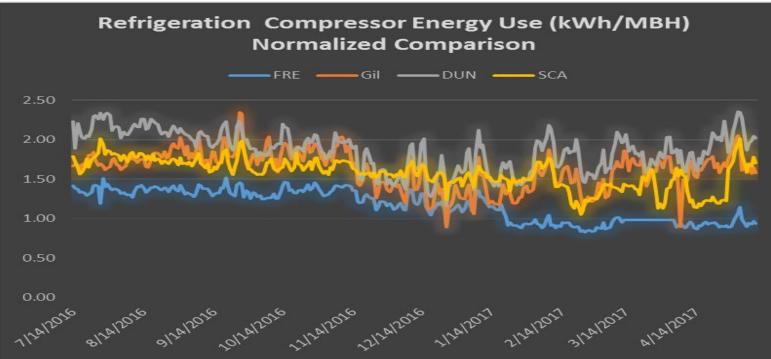
- > Whole Foods Market (WFM) & Natural Refrigerants
- Systems Employed
- Performance Comparisons
- Summary & Lessons Learned

WFM & Natural Refrigerants

- Refrigerant Reduction (GreenChill Partner with 10 Platinum, 5 Gold, and 6 Silver Certifications)
- Energy efficiency and overall reduced consumption
- Stable System Operation
- Reviewing all options available
- > Different climate zones may call for different solutions

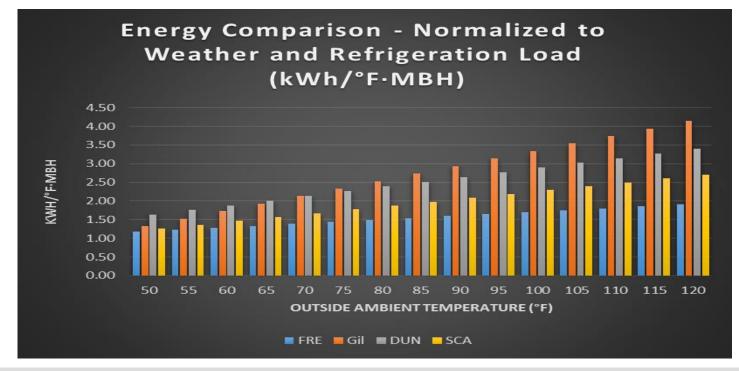
System Details

Store ID	Size (Ft ²)	Refrigeration Load (MBH)	Refrigerant Charge (LBS)	System Type
FRE	39,026	847	R407A (1,225)	Distributed 407A scroll units, hybrid condensers
GIL	47,805	650	CO ₂ (1,200)	CO ₂ Transcritical, Gas Cooler (air cooled)
DUN	40,072	605	CO ₂ (1,440) NH ₃ (250)	Low-Temp DX CO ₂ ,/Medium temp liquid overfeed CO ₂ , cascaded to R717 (NH ₃) system, hybrid condensers
SCA	50,198	750	CO ₂ (1,730) Propane (231)	Low-Temp DX CO ₂ ,/Medium temp liquid overfeed CO ₂ , cascaded to R290 (Propane C ₃ H ₈) system, air cooled condensers

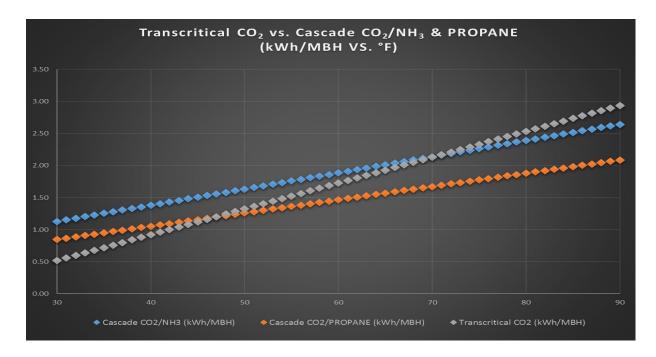

System Cost*

Store	Туре	System Cost	Install Cost	Total	Percent Increase Over Baseline
FRE	Baseline DX	1	1	2	0%
GIL	CO ₂ Transcritical	1.22	2.01	3.23	61%
DUN	Low-Temp DX CO ₂ ,/Medium temp liquid CO ₂ , Cascaded R717 (NH ₃) System	2.45	1.58	4.03	101%
SCA	Low-Temp DX CO ₂ ,/Medium temp liquid CO ₂ , Cascaded R290 (Propane C ₃ H ₈) System	2.06	2.66	4.72	136%

*Normalized to Refrigeration Load



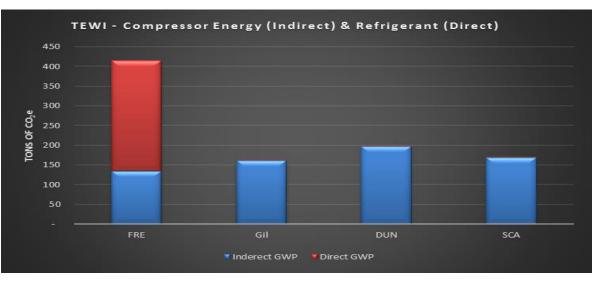
Refrigeration Energy Use



Projected Refrigeration Energy Use

ATMO sphere Energy Performance – Normalized to Case Design Load

- Daily kWh divided by design case load
- Plotted vs Ambient temperature
- Crossroads is
 72° for Ammonia
 and 48° for
 Propane


Energy Performance

- Transcritical CO₂
 refrigeration
 system
 - Absorption
 Chiller
 - Maximize
 Sub-Critical
 operation
- Operates in "Subcritical" and in Transcritical modes

TEWI – Refrigeration Comparison

- > Tons of CO₂e Emissions
 - Includes Refrigeration Compressors Energy Usage (Indirect emissions) and Refrigerant Leaks (Direct)
 - Natural refrigerants Emit 1,500 times less CO₂e than the 407A (FRE store)
- Assumes:

 \geq

- 621 Lbs. CO₂e/MWH for California (source: EIA)
- > R407A GWP of 2,107
- Standard Leak Rate
- Energy use normalized to FRE

Lessons Learned

- Custom systems come at a premium, but standardization & wider adoption is driving cost down
- Controls collaboration and commissioning are key
- Collaborative design/implementation who drives the process (OEM, EoR, Owner, Installer)?
- Authority Having Jurisdiction (AHJ) Engagement
- Natural Refrigerant Accessibility
- Contractors/technicians are becoming more comfortable, but training is still very necessary
- Safety procedures, contractors, store personnel
- Industrial vs. commercial applications
- Anticipated energy penalty doesn't apply, but TEWI says it all

A Case Study of the CO₂ System at Whole Foods Market, Castro

Tristam Coffin, LEED AP Sustainable Facilities Coordinator, Whole Foods Market <u>Tristam.Coffin@wholefoods.com</u>

> Tom Wolgamot, PE, LEED AP, CPMP Principal, DC Engineering (406) 829-8828 x201 <u>twolgamot@dcengineering.net</u>

Thank you very much!

