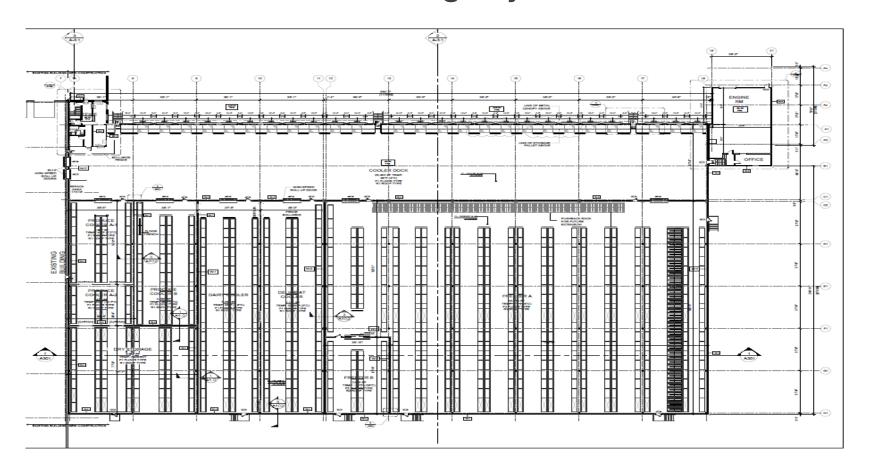


Various Approach using Natural refrigerant For a Cold Storage Project Construction

Introduction


- Being the leading supplier of Ammonia industrial system for more than 100 years, we are now expanding with more and more usage of CO2.
- The Province of Quebec has over 7 majors Fruit and vegetables cold storage facility built and operated for more than a year
- This project will be the first one been built in Ontario
- This project will have low temperature freezer and medium temperature rooms and docks
- The customer has multiple facility using Freon, Ammonia and CO2
- Proposal were made offering various alternative, from all ammonia system, ammonia/Co2 cascade and CO2 transcritical

The customer is already somehow familiar with ammonia/CO2 equipment. In another facility in Ontario, the very first low charge ammonia and recirculated brine CO2 low temperature Newton System was installed for their freezer operation. It has been running for few years now with excellent results and performance

New Building Layout

Building Requirement

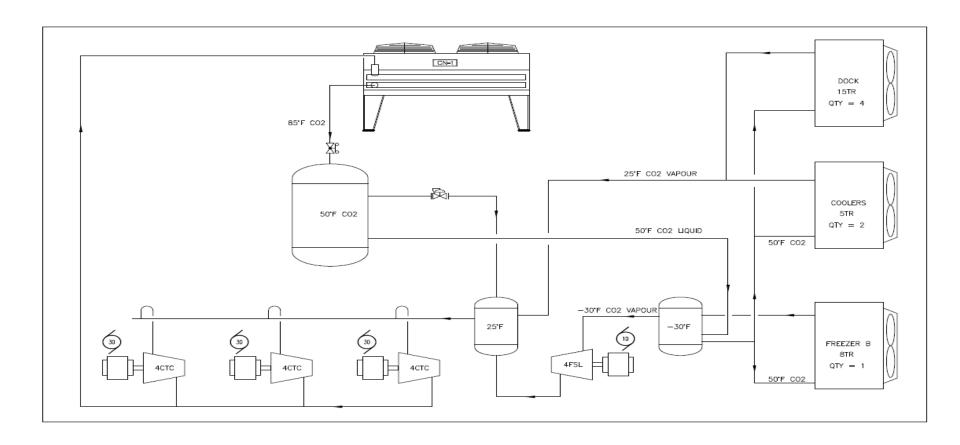
Room Name	Clear Height to	Area	Temperature Range		Relative Humidity	
Room Name	U/S of Roof Deck	(SF)	Min	Мах	Min	Мах
Dry Storage	39'-6"	5,885	AMB	AMB	NA	NA
Produce Cooler A-1	39'-6"	2,907	+45°F	+45°F	0%	65%
Produce Cooler A-2	39'-6"	1,423	+55°F	+55°F	0%	65%
Produce Cooler B	39'-6"	4,190	+38°F	+38°F	0%	65%
Dairy Cooler	39'-6"	7,083	+35°F	+35°F	0%	65%
Deli / Meat Cooler	39'-6"	7,161	+32°F	+33°F	0%	65%
Freezer A	39'-6"	40,534	0°F	0°F	NA	NA
Freezer B	39'-6"	2,630	-20°F	-20°F	NA	NA
Cooler Dock	28'-0"	25,452	+38°F	+38°F	0%	65%
Engine Room	18'-8"	2,660	AMB	AMB	NA	NA
Offices (Main Floor + 2 nd Floor)	28'-0"	1,968	AMB	AMB	NA	NA

10 TR

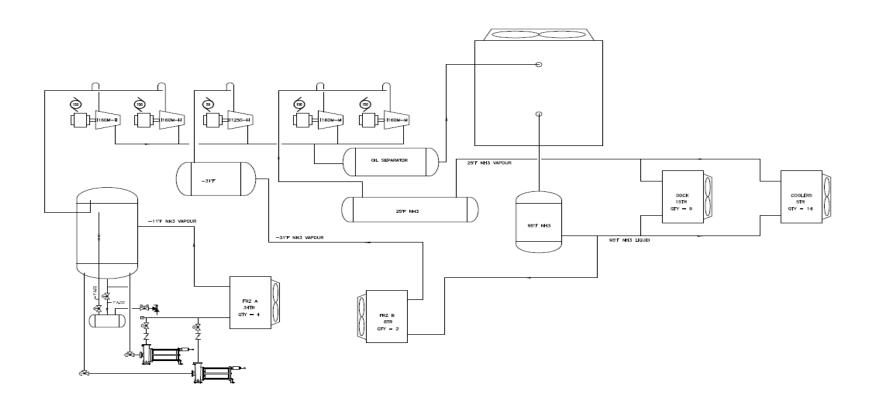
10 TR

12 TR

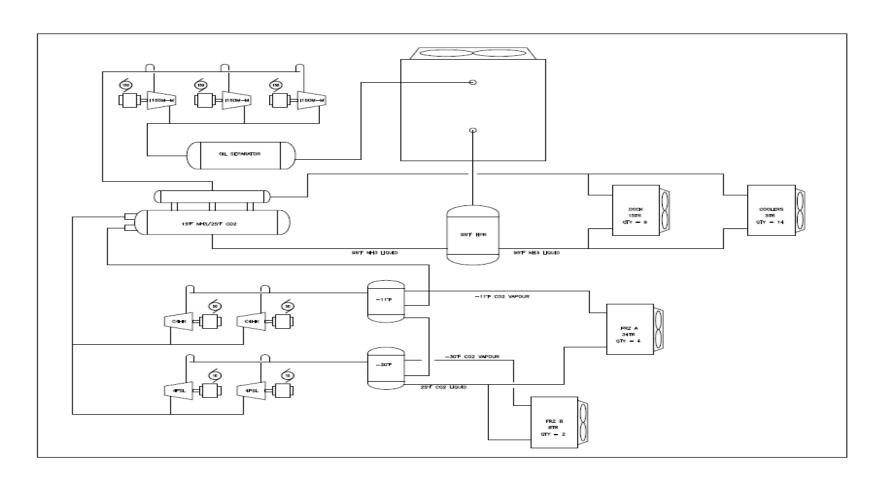
19 TR


21 TR

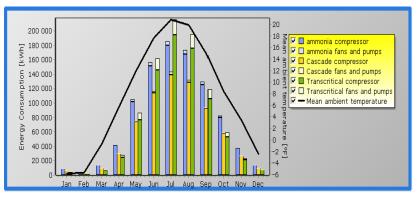
35 TR


15 TR

135 TR


CO2 Transcritical System

All Ammonia

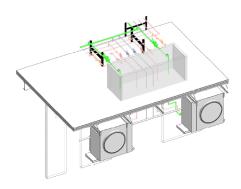


Ammonia/CO2 Cascade

Energy usage

Energy consumption table

	ammonia			Cascade			Transcritical		
Month	Compressor [kWh]	Fans and Pumps [kWh]	Total [kWh]	Compressor [kWh]	Fans and Pumps [kWh]	Total [kWh]	Compressor [kWh]	Fans and Pumps [kWh]	Total [kWh]
January	8 568,5	79,0	8 647,5	6 135,0	2,8	6 137,7	4 274,2	225,3	4 499,4
February	4 699,9	31,0	4 730,9	3 362,8	1,4	3 364,2	2 340,3	52,8	2 393,0
March	13 536,5	123,0	13 659,5	9 708,2	4,5	9 712,8	6 872,2	440,4	7 312,6
April	41 130,4	917,8	42 048,1	29 740,9	37,0	29 777,9	24 653,2	3 192,7	27 845,9
May	101 427,6	3 183,0	104 610,6	74 226,4	422,6	74 649,0	76 289,5	9 791,1	86 080,7
June	151 036,4	4 859,5	155 895,9	113 802,5	2 470,7	116 273,1	145 089,2	16 893,6	161 982,8
July	179 801,0	5 864,2	185 665,2	138 816,5	3 894,2	142 710,7	194 392,9	20 970,9	215 363,8
August	167 420,5	5 536,4	172 957,0	128 509,2	3 047,3	131 556,5	175 356,1	20 017,7	195 373,8
September	124 946,0	4 119,0	129 065,0	92 605,7	1 117,5	93 723,2	105 501,6	12 961,7	118 463,3
October	79 395,7	2 460,2	81 855,9	57 971,0	187,5	58 158,5	52 737,4	6 706,8	59 444,2
November	37 495,0	905,1	38 400,1	27 060,4	23,4	27 083,8	20 805,7	2 169,8	22 975,6
December	13 777,8	117,8	13 895,7	9 873,3	5,4	9 878,6	7 127,3	560,4	7 687,8
Total	923 235,2	28 196,0	951 431,3	691 811,9	11 214,2	703 026,1	815 439,7	93 983,3	909 423,0
Average	76 936,3	2 349,7	79 285,9	57 651,0	934,5	58 585,5	67 953,3	7 831,9	75 785,2

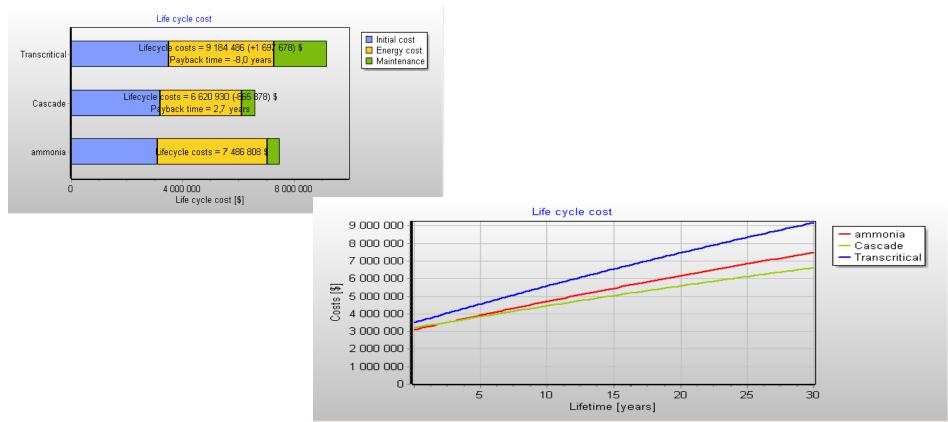


Maintenance and Replacement

Preventive Maintenance

We put in this category, the initial start-up, expected monthly visit and day to day good engineering practices.

	Ammonia	Cascade CO2/Ammonia	Transcritical
Start-up time and difficulties	\$ 5200	\$ 7 800	\$ 18 200
Leak test and check	By operator	By operator	\$ 5000
Oil drainage	By operator	By operator	
Relief line check up	By operator	By operator	\$ 3500
Set up and control	By operator	By operator	\$ 5000
adjustment			
Restart after power failure	By operator	By operator	\$ 1500
Piston compressor rebuilt		20 K x 10 Y = \$2000	In the replacement section
Total per year based on 30	\$ 175	\$ 2 260	\$ 17 606
years			



Equipment Replacement

	Ammonia			Cascade CO2/ammonia			Transcritical		
	Cost	Life Ex.	C.P.Y.	Cost	Life Ex.	C.P.Y	Cost	Life Ex.	C.P.Y.
Compressor	\$12,000 x 5	30Y.	\$2 000	\$12,000 x 5	30 Y.	\$2,000	\$6000 x 19	5 Y.	\$23,800
Condenser	\$106,000	20 Y.	\$5,300	\$100,000	20 Y.	\$5,000	\$18000 x 7	15 Y.	\$8 400
Condenser Motor	\$1500	5 Y.	\$300	\$1500	5 Y	\$300	\$500 x 28	5 Y.	\$2 800
Evaporator Fan and motors	\$400 x 48	5 Y.	\$3 840	\$400 x 48	5 Y.	\$3 840	\$400 x 109	5 Y.	\$8 720
Water Pump	\$2,500	10 Y.	\$250	\$2,500	10 Y.	\$250			
Ammonia pump	4500 x 2	10 Y	\$ 900						
Heat Exchanger				\$50 000	30 Y.	\$1 666			
Electrical Panel	\$115,000	30 Y.	\$3 833	\$108 000	30 Y.	\$3 600	25 k x 7	15 Y.	\$11 666
CO ₂ Receivers	N/A	N/A	N/A	N/A	N/A	N/A	\$25,000	30 Y.	\$833
Primary Refrigerant Charge	\$3000	20 Y.	\$200	\$3000	10 Y.	\$300	\$3,000	10 Y.	\$300
Glycol Charge	\$9,500	20 Y.	\$475	\$9,500	20 Y.	\$475	N/A	N/A	N/A
Total Per Year	\$17,090		\$17 431			\$56 519			
Total over 30 Years	\$446 849			\$509 638			\$1 918 487		

Life Cycle Cost

Life Cycle Cost

	ammonia	Cascade	Transcritical
Initial cost:			
Cost of equipment [\$]	1 400 000	1 550 000	1 650 000
Cost of installation [\$]	1 400 000	1 550 000	1 650 000
Annual operating cost:			
Energy consumption [kWh]	939707,30	681503,89 (-258 203)	805304,44 (-134 403)
Cost of maintenance [\$]	17 265	19 691	60 000
Result:			
Effective interest rate [%]	0,98	0,98	0,98
Internal rate of return [%]	-	12,59	-100,00
Total annual cost [\$]	167 618	128 732 (-38 887)	188 849 (+21 231)
Payback time [years]	-	7,7	-23,6
Total initial cost [\$]	2 800 000 (39%)	3 100 000 (48%)	3 300 000 (40%)
Present value of maintenance cost [\$]	446 849 (6%)	509 638 (8%)	1 552 907 (19%)
Present value of energy cost [\$]	3 891 409 (55%)	2 822 166 (44%)	3 334 835 (41%)
Life cycle cost [\$]	7 138 258	6 431 804 (-706 453)	8 187 742 (+1 049 484)

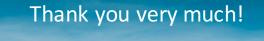
Cost Analysis

In every cases, Strictly considering the Initial Cost only could be a dangerous trap

- The right Solution could be different depending on the customer criteria and priorities
- In this case the ammonia/Co2 cascade system had the lowest Total Cost of Ownership
- The price of energy in Ontario is calculated at 0,16 \$/kwhr and this reality makes the energy portion of the total cost more impactful than the other components.
- The maintenance and replacement cost component had a bigger value for the transcritical system considering the more commercial equipment type, commercial components and the number of compressors necessary
- Considering the possible of using multiple transcritical rack might had avoided the requirement of an operator, then the TCO would have been slightly better for the transcritical proposal.

Barriers and Solutions

- Using new technology is always a challenge
- Customer are face with numerous element composing their possible solution and need to be capable of evaluating all of those
- Investment should be made on Total cost of Ownership
- Operator requirement in the Province of Ontario is a challenge and has a tremendous impact on type of system.
- Government and regulation authorities are not yet ready for some NR usage like CO2.
- Some customers capable of understanding the impact of TCO while most of others have limited knowledge and are being the hostage of some consultant and contractors still promoting lower initial cost Freon system.



Lessons learnt

- Changes is inevitable
- The pace of that changed is different depending on rules and obligations
- It is difficult to have establish behavior changed, going this route is the future

