ENGINEERING TOMORROW

Refrigerants trends in Industrial Refrigeration ATMOsphere Shanghai 7th April 2015

Carsten Dahlgaard

Industrial Refrigeration - Trends / Drivers

Industrial Refrigeration - Trends / Drivers

Regulation

Safety

- Reduce risk of personal injury
- Food & product quality
- Expand cold chain in emerging countries

Environment

Refrigerants

- Natural refrigerants / low GWP & low ODP refrigerants
 Sustainability
 - Efficiency
 - Low energy consumption.

Cost and profitability

- Efficiency
- Energy saving
- Reliability
- Reduce down time
- Productivity

Refrigerant trends today

Segment	Household Refrigeration	Commercial Refrig <mark>eration</mark>	Industrial Refrigeration	Chemical / Petrochemical
Refrigerant				
	CO ₂ Transcritical		CO ₂ sub critical	
	Hydro Carbons		Ammonia	
	CFC - HCFC - HFC			Hydro Carbons
System size	Small	Medium	Large	Large

Refrigerant trends tomorrow

Segment	Household Refrigeration	Commercial Refrig <mark>eration</mark>	Industrial Refrigeration	Chemical / Petrochemical
Refrigerant				
	CO ₂ Transcritical		CO ₂ sub critical	
	Hydro Carbons		Ammonia	
	CFC - HCFC - HFC			Hydro Carbons
System size	Small	Medium	Large	Large

CO₂ Transcritical move to Large systems Ammonia move to Medium systems CFC – HCFC – HFC reduce from Large systems

Refrigeration Safety

Cooperation

- Ensuring Safety
 - Clear guidelines
 - Regulations
 - Understood, documented and followed by stakeholders:
 - Government bodies
 - Plant owners
 - Plant operators
- End Users want "State of the Art" Refrigeration Plants
 - Proper design
 - Safe and reliable components
 - Good control strategies
 - Proper maintenance and repair

Refrigerated Food Industry

• What is important?

- Minimizing Risk: End-users demand for high quality components and "state of the art" controls.
- Implementation: Installation in accordance to design and standards with qualified contractors.
- Invest in Safety: Empower and train employees to operate and maintain the equipment.
- Continuous training and development: Good habits develop over time and ensure positive results.

Technology Considerations

- Long Term Investment
 - Safety and Efficiency:
 - New materials
 - Advanced valves (no flanges)
 - Efficient compressors and heat exchangers
 - Reliable and safe systems
- Making the Right Choice
 - Natural Refrigerants:
 - The solution today and tomorrow
 - Refrigerant Choice Considerations:
 - Plant location (rural vs. city)
 - Products to be refrigerated
 - Process involved
 - Ammonia charge reduction:
 - Electronic Direct Expansion Technology
 - Growth of NH₃/CO₂ systems

Trends in Ammonia charge

Ammonia charge in large industrial refrigeration systems

Safety Improvement Solutions

- Current situation in China
 - Mainly manual system
 - less than 30% new systems are automatic
- Automatic controls
 - Reduce human error during operation
 - Less operators, less risk
 - Remote monitoring and control
 - Positive trend in China to improve automatic control

Manual System

Automatic System

and rand arm 大匠园

Ammonia Refrigeration – a large contributor to the Chinese meat industry

The largest CO₂ food processing & cold storage project in China – Zhangzi Island

Three Gorges Logistics Park Customized automated control solutions

Trend

of food is lost due to poor refrigeration system performance and during transportation

Danfoss

A customized industrial refrigeration automated control solution for the Three Gorges Logistics Park

Conclusion

- Ammonia is the most dominant refrigerant within industrial. It is a wellproven and effective refrigerant with a long experience, however its toxicity needs to be addressed, system design and location evaluated carefully.
- Safety is crucial, thus "state of the art" standard, guide lines and management system need to be full filled.
- Low charge systems is a must in many locations in order to minimize risk.
 - Design systems with reduced charge.

Thank you!