EUROPE ATMO Sphere

Market Trends & Opportunities Panel

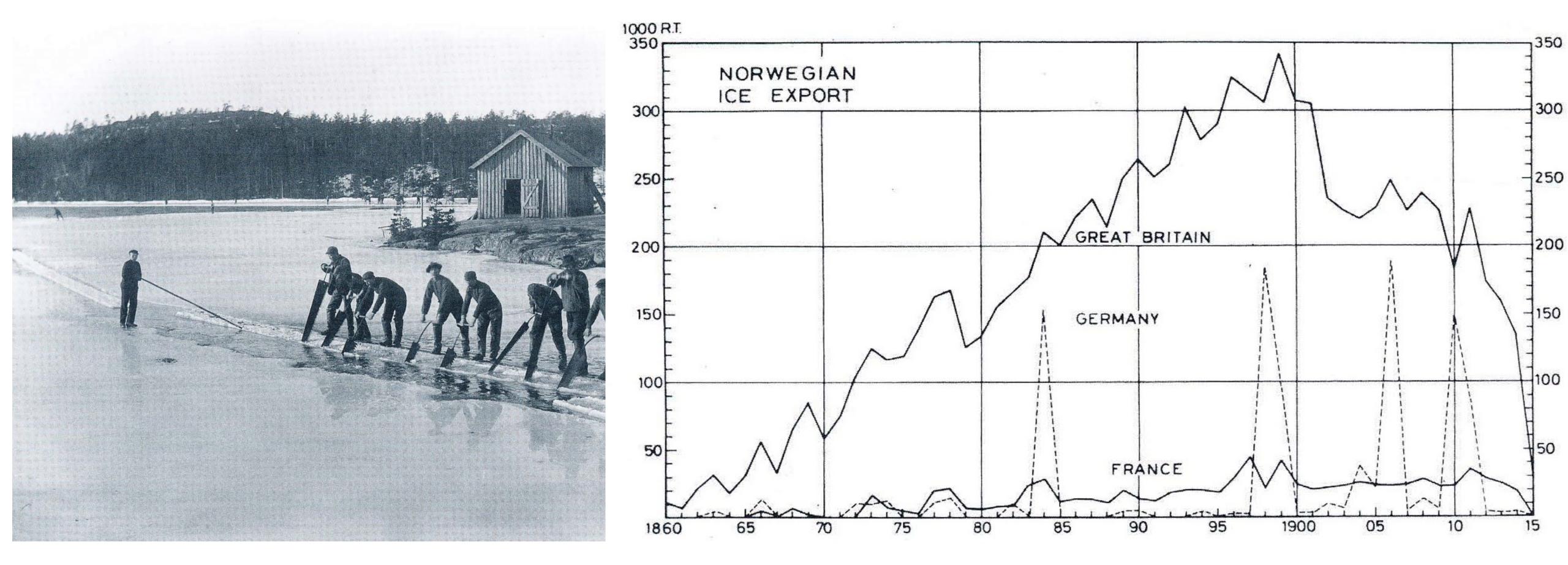
EUROPE ATMO

Introduction

Content of intro

 How was refrigeration provided in the past What is the current situation Market perspectives for NWF: - CO₂ the only real and safe 'A1' fluid for commercial refrigeration - Hydrocarbons for small (500g) and industrial systems - Ammonia, reliable since 1875 for industrial applications - others (air, water) filling niches

Refrigeration in the past


Factors pushing the development of mechanical refrigeration technology from $1850 \rightarrow$

"Artificial" ice production Brewing of beer (all year long) Transport of meat

ATMO 150 years ago: ICE = refrigeration

Norwegian Ice Export from 1860 to 1915

ATMO sphere **Natural working fluids also common in the US:**

Advertisement in ICE and REFRIGERATION, 1922, vol. 63

Working fluids history

Until 1930 1930-50 1987 1987 1997 2006/2007 2015 → 1990-now

ammonia, propane, isobutane, CO,, etc. Introduction of synthetic working fluids, like CFC12 and HCFC22 chloride/bromine. Phasing out CFC (1995) and HCFC (2010) Hydrogen-Fluor-Carbons (HFC) introduced Kyoto protocol established, HFC regulated due to high GWP factor EUs F-gas directive – Phase down of high GWP fluids **EU F-gas regulation** and CO₂

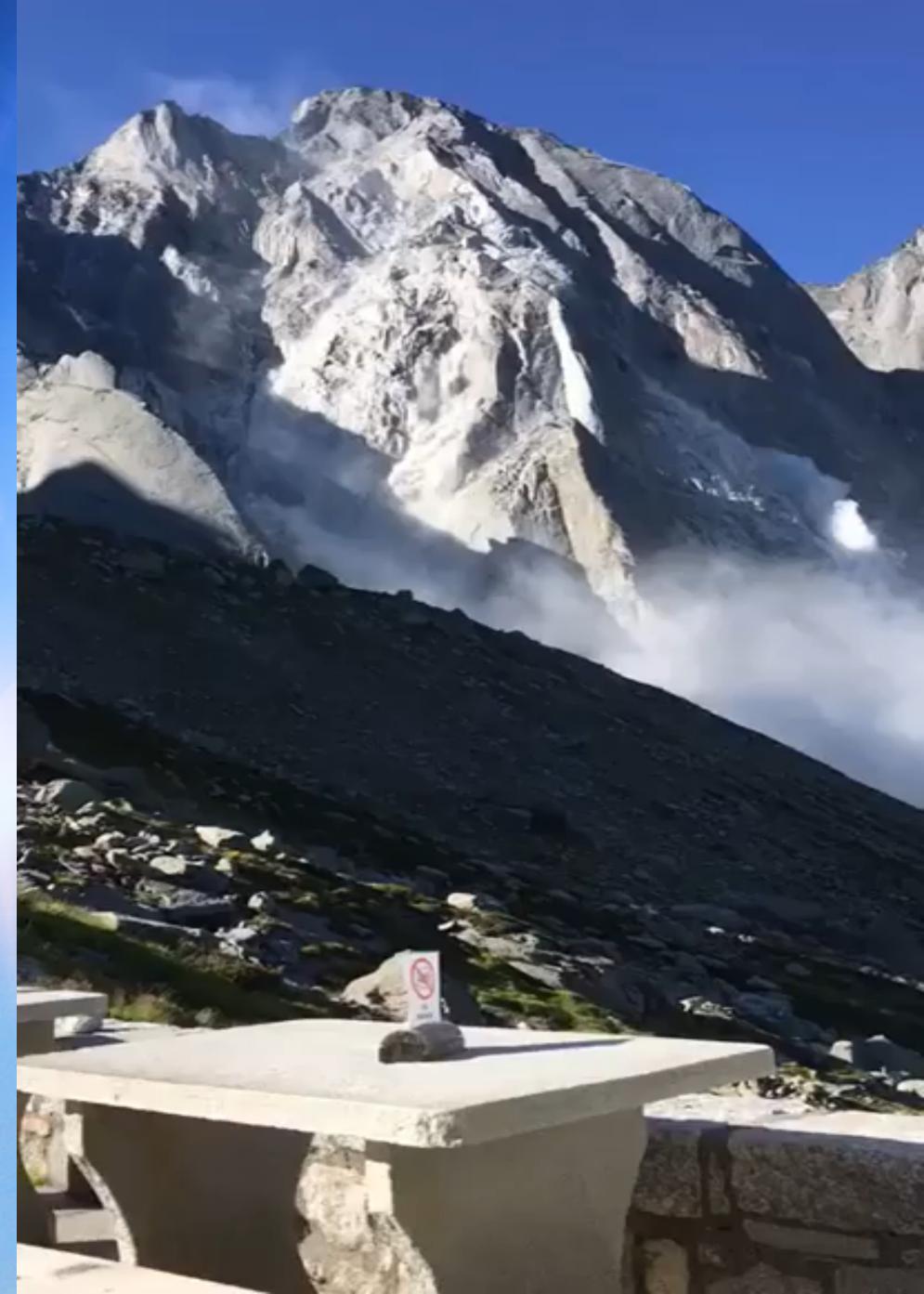
- Use of natural working fluids Air, ethyl ether, SO₂, methyl chloride,
- Montreal protocol established, CFC and HCFC ozone depletion due to

Increasing focus on use of natural working fluids, especially ammonia, hydrocarbons


2001 **Children's** Painting Competition by UNEP

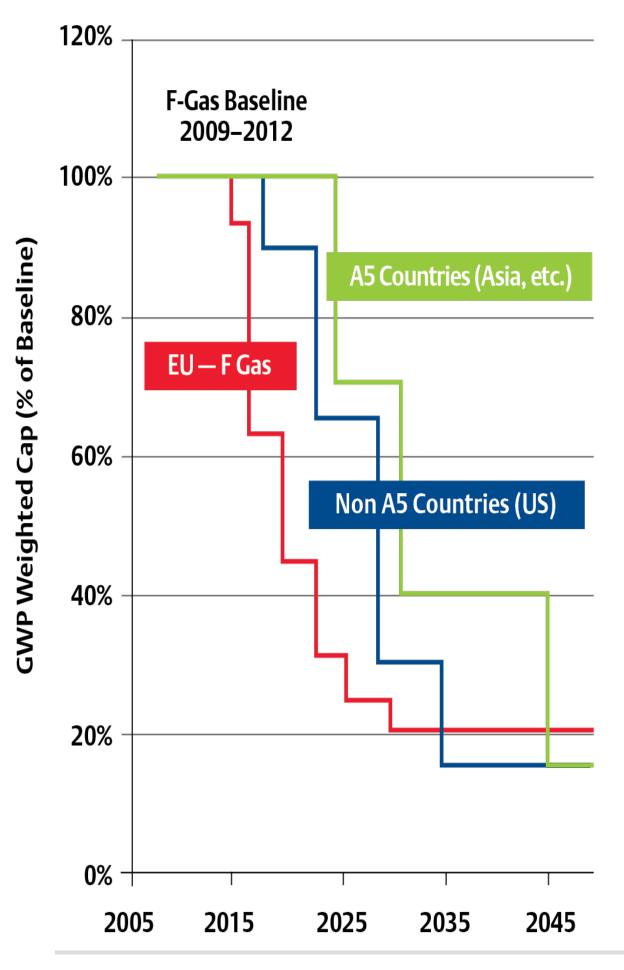
Image taken from the 2001 UNEP DTIE

OzonAction Programme Children's Painting Competition. Painting by Mariam Salman Al Oraibi, aged 12, Bahrain


Consequences of global warming ->

Far away...

However, when the permafrost is melting...


Piz Cengalo Switzerland 24thAug. 2017

F-gas Regulation (in a nutschell) EUROPE ATMO Sphere

Present conventional refrigeration systems are not future long-term solutions:

- 79% Reduction of GWP related emission by 2030

Which options are available for stakeholders?

>>

- Availability/cost of the gas and equipment
- Future ban of service and maintenance
- Stricter leak detection and refrigerant recovery processes
- Convert/retrofit with new synthetic low-GWP refrigerants; **>>**
 - Total environmental impact un-known, future regulation?
 - Energy Efficiency + **Cost** of the refrigerant?
- **Natural Refrigerant** business orientation. **>>**
 - Long term solution
 - Investment cost no longer higher than traditional HFC

ATMOsphere Europe / Berlin / 25-27 September 2017

• Ban refrigerants GWP>150 from 2022 (centralized refrigeration system >40 kW, Primary Cycle in cascade configuration >1500)

Business as usual <u>until 2020</u> and then usage of recycled gas until 2030;

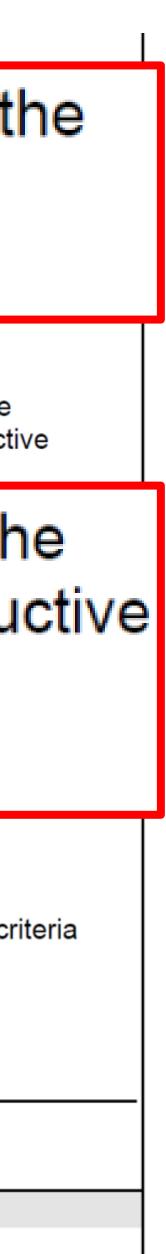
Please have a close look into the material safety data sheets [MSDS]: **Provided by the Suppliers -> Responsibility is at** your side!

Dichloromethane

harm. Chloromethane

Honeywell SAFETY DATA SHEET Honeywell Solstice[®] N40 Refrigerant (R-448A) 000000017419 Revision Date 10/30/2014 Version 1.4 Print Date 12/22/2014

Example R-448A proposed as substitute for R-404A


WARNING! This product contains a chemical known to the State of California to cause cancer. 75-09-2


: WARNING: This product contains a chemical known to the State of California to cause birth defects or other reproductive

WARNING: This product contains a chemical known to the State of California to cause birth defects or other reproductive

74-87-3

Pennsylvania RTK	: Difluoromethane	75-10-5
WHMIS Classification	 A: Compressed Gas This product has been classified according to the hazard cr of the CPR and the MSDS contains all of the information required by the CPR. 	
SECTION 16. OTHER INFORM	IATION	
	Page 19 / 20	

Art.-Nr. 56396624

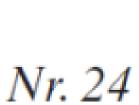
GEMEINSAMES MINISTERIAL BLATT Seite 457 HERAUSGEGEBEN VOM BUNDESMINISTERIUM DES INNERN

67. Jahrgang

ISSN 0939-4729

Stoffidentität				
Bezeichnung	EG-Nr.	CAS-Nr.		
(+)-Weinsäure	201-766-0	87-69-4		
trans-1,3,3,3-Tetrafluorpropen	471-480-0	29118-24-9		
HFC-1234yf	616-220-0	754-12-1		
Ziram	205-288-3	137-30-4		

Example HFC-1234yf (essential part of blend: R-448A & R-449A)


G 3191 A


Berlin, den 24. Juni 2016

Arbeitsplatz-Spitzenbegr. Anderung grenzwert Überschrei-Monat/ ml/m³ mg/m³ Bemerkungen tungsfaktor Jahr (ppm) 2 E 2 (I) DFG, Y 04/16 DFG, Y 4700 2 (II) 04/16 1000 950 DFG, Y 04/16 200 2 (II) 0.01 E DFG, Y, Sh 04/16 2 (I)

ATMO sphere **Commercial Refrigeration; Supermarkets**

- The average annual refrigerant leakage rates:
 - in Europe: 15-20 % of the total charge, mainly HFC-404A
 - Worldwide about 30 % of the charge, mainly HCFC-22

Evolution of R744 Commercial Refrigeration since 2003:

SEER: Seasonal Energy Efficiency Rating

ATMOsphere Europe / Berlin / 25-27 September 2017

SEER + 10-20% Allel PC with ession Ejector Support

ATMO sphere **Commercial Refrigeration; Supermarkets**

demands in the building (and surrounding)

- Air Conditioning (direct or chilled water) \checkmark
- Heat recovery: hot water production, space heating, ice protection \checkmark
 - Heat pump function & export of heat

CO₂ (R744) is the preferred alternative of the end-users across **Europe for new installations**

- Predictable no restrictions -> the only real A1 fluid with GWP=1
- CO₂ booster units are proven technology with potential to further improve COP (parallel compression + ejector technology)
- Training and support is key for success

 \checkmark

In future: supermarket refrigeration system provides entire energy flow and

Promising global perspectives for a successful Phase-in

ATMO sphere The end user decides!

 It's <u>up to you</u> to get initial costs down: if you don't focus and favour with different working fluids for new / to be refurbished supermarkets. \rightarrow The high volume R744 systems/equipment which give cost reduction will not appear... - You will pay the bill -> twice if you don't go for CO₂ in the first run.

Clever strategy after Paris COP, Kigali & Marrakech Meetings:

- Companies focusing on **Natural Working Fluids** will face no risk to invest into technologies being on the phase out agenda in the future
 - Safe & sustainable investment

EUROPE ATMO

#

Thank you very much!

S 2

