1. INTRODUCTION 2. CO₂ VS AMMONIA: SAFETY AND TECHNICAL DIFFERENCES 3. CO₂ VS AMMONIA: PERFORMANCE COMPARISONS - F-gas REGULATION: - STRONG INFLUENCE IN THE EUROPEAN REFRIGERATION INDUSTRY - NATURAL REFRIGERANTS: - THE BEST ALTERNATIVE FOR ALMOST ALL THE APPLICATIONS - INDUSTRIAL APPLICATIONS - CO₂ IS APPROACHING THIS FIELD AGAINST AMMONIA ### 1. INTRODUCTION 2. CO₂ VS AMMONIA: SAFETY AND TECHNICAL DIFFERENCES 3. CO₂ VS AMMONIA: PERFORMANCE COMPARISONS - AMMONIA IS A NICE REFRIGERANT BUT HAS SOME DRAWBACKS: - TECHNICAL DRAWBACKS - CALLS FOR SPECIAL AND MORE EXPENSIVE COMPONENTS - CALLS FOR OPEN TYPE COMPRESSORS: LEAKAGES - NON MISCIBLE LUBRICANT OIL MANAGEMENT IS AN ISSUE - CANNOT FLOW IN HEAT RECOVERY COILS: POOR EFFICIENCY - DAMAGE TO CONTROLS IN CASE OF LEAKAGE (PLANT SHUT DOWN !!) - SAFETY DRAWBACKS - TOXIC AND FLAMMABLE (T1 DOORS FOR MACHINERY ROOMS) - COMPLEX AUTHORIZATION FOR COMMISSIONING AND MAINTENANCE ### °COLING POST \$154,000 fine for ammonia leaks USA: A fruit juice processor that experienced three ammonia refrigeration leaks in the past year faces fines of \$154,000 by Washington State's Department of Labor & Industries (L&I). The Johanna Beverage Company of Spokane has been accused of putting employees at risk through a lack of emergency planning. In each of the incidents – one in December 2015 and two in August 2016 – employees were unsure what to do, which way to run to escape the corrosive vapours and how to call for emergency help. In one of the August incidents, panicked employees ran downwind of the leak into the vapour cloud. Eight employees were exposed; one was sickened and taken to the hospital. One incident also resulted in the temporary shutdown of Interstate 90 as fire crews responded to the leak thought to have involved between 600lb and 800lb of ammonia. ## http://www.coolingpost.com/world-news/154000-fine-for-ammonia-leaks/ 1. INTRODUCTION 2. CO2 VS AMMONIA: SAFETY AND TECHNICAL DIFFERENCES 3. CO₂ VS AMMONIA: PERFORMANCE COMPARISONS ### • ENERGY CONSUMPTION COMPARISON – NH₃ vs CO₂ – SYSTEM FEATURES: - 250 kW LT CAPACITY - 500 kW NET MT CAPACITY - NO HEAT RECLAIM (TO BE CONSERVATIVE) - SYSTEM A: CO₂ CASCADED WITH NH₃ - SYSTEM B: FULL CO₂ BOOSTER FLASH GAS BYPASS (FGB) - SYSTEM C: FULL CO₂ BOOSTER PARALLEL COMPRESSION (PC) - NH₃: MINIMUM T_{COND} ACCORDING TO BITZER OSKA RANGE ENVELOPE - CO₂: MINIMUM T_{COND} ACCORDING TO DORIN CD RANGE ENVELOPE # SYSTEM C - A: CO₂ CASCADED WITH NH₃ - B: CO₂ FLASH GAS BYPASS (FGB) - C: CO₂ PARALLEL COMPRESSION (PC) ### YEARLY ENERGY & COST COMPARISON: STOCKHOLM | | NH3 | CO2 FGP | CO2 PC | |--|-----------------------|-----------------|-----------| | Soddisfacimento del carico in % del tempo | | | | | LT: | 100,0 | 100,0 | 100,0 | | MT: | 100,0 | 100,0 | 100,0 | | Totale: | 100,0 | 100,0 | 100,0 | | Soddisfacimento del carico in % di energia | | | | | LT: | 100,0 | 100,0 | 100,0 | | MT: | 100,0 | 100,0 | 100,0 | | Totale: | 100,0 | 100,0 | 100,0 | | COP medio | | | | | LT [-]: | 4,50 | 4,99 | 4,99 | | MT [-]: | 4,46 | 5,10 | 5,25 | | Totale [-]: | 2,73 | 3,12 | 3,18 | | Consumo di energia di pompe e ventilatori | | | | | LT [kWh]: | 0 | 0 | 0 | | MT [kWh]: | 335.190 | 215.938 | 215.206 | | Totale [kWh]: | 335.190 | 215.938 | 215.206 | | Consumo di energia del compressore | | | | | LT [kWh]: | 943.423 | 849.868 | 849.868 | | MT [kWh]: | 1.778.087 | 1.614.632 | 1.331.260 | | Parallel [kWh]: | 0 | 0 | 230.656 | | Totale [kWh]: | 2.721.510 | 2.464.500 | 2.411.783 | | Consumo totale di energia | | | | | LT [kWh]: | 943.423 | 849.868 | 849.868 | | MT [kWh]: | 2.113.278 | 1.830.570 | 1.777.121 | | Totale [kWh]: | 3.056.700 | 1 | 2.626.989 | | Risparmi | TO STATE PASCIONALINA | Na Price Street | Tree- | | Risparmi di energia annui [kWh]: | | 376.262 | 429.712 | | Risparmi di energia annui [%]: | _
 | 12,3 | 14,1 | - SYSTEM A: NH₃ - SYSTEM B: CO₂ FGB - SYSTEM C: CO₂ PC ### • YEARLY ENERGY & COST COMPARISON: BERLIN | | NH3 | CO2 FGP | CO2 PC | |--|----------------|--------------------------|-----------| | Soddisfacimento del carico in % del tempo | | | | | LT: | 100,0 | 100,0 | 100,0 | | MT: | 100,0 | 100,0 | 100,0 | | Totale: | 100,0 | 100,0 | 100,0 | | Soddisfacimento del carico in % di energia | | | | | LT: | 100,0 | 100,0 | 100,0 | | MT: | 100,0 | 100,0 | 100,0 | | Totale: | 100,0 | 100,0 | 100,0 | | COP medio | | | | | LT [-]: | 4,50 | 4,99 | 4,99 | | MT [-]: | 4, 1 8 | 4,48 | 4,63 | | Totale [-]: | 2,61 | 2,85 | 2,92 | | Consumo di energia di pompe e ventilatori | | | | | LT [kWh]: | 0 | 0 | 0 | | MT [kWh]: | 369.249 | 212.635 | 211.791 | | Totale [kWh]: | 369.249 | 212.635 | 211.791 | | Consumo di energia del compressore | | | | | LT [kWh]: | 946.283 | 852.445 | 852.445 | | MT [kWh]: | 1.891.374 | 1.879.374 | 1.504.059 | | Parallel [kWh]: | 0 | 0 | 306.643 | | Totale [kWh]: | 2.837.658 | 2.731.819 | 2.663.147 | | Consumo totale di energia | | | | | LT [kWh]: | 946.283 | 852.445 | 852.445 | | MT [kWh]: | 2.260.623 | 2.092.009 | 2.022.493 | | Totale [kWh]: | 3.206.907 | 2.944.454 | 2.874.938 | | Risparmi | go sa pasainte | Na Price in the state of | Toponico. | | Risparmi di energia annui [kWh]: | - | 262.453 | 331.968 | | Risparmi di energia annui [%]: | | 8,2 | 10,4 | SYSTEM A: NH₃ SYSTEM B: CO₂ FGB SYSTEM C: CO₂ PC ### • YEARLY ENERGY & COST COMPARISON: BARCELONA | | NH3 | CO2 FGP | CO2 PC | |--|---|--------------------|-----------| | Soddisfacimento del carico in % del tempo | | | | | LT: | 100,0 | 100,0 | 100,0 | | MT: | 100,0 | 100,0 | 100,0 | | Totale: | 100,0 | 100,0 | 100,0 | | Soddisfacimento del carico in % di energia | | | | | LT: | 100,0 | 100,0 | 100,0 | | MT: | 100,0 | 100,0 | 100,0 | | Totale: | 100,0 | 100,0 | 100,0 | | COP medio | | | | | LT [-]: | 4,50 | 4,99 | 4,99 | | MT [-]: | 3,72 | 3,40 | 3,57 | | Totale [-]: | 2,41 | 2,32 | 2,41 | | Consumo di energia di pompe e ventilatori | | | | | LT [kWh]: | 0 | 0 | 0 | | MT [kWh]: | 410.792 | 206.663 | 205.713 | | Totale [kWh]: | 410.792 | 206.663 | 205.713 | | Consumo di energia del compressore | | | | | LT [kWh]: | 951.563 | 857.201 | 857.201 | | MT [kWh]: | 2.142.516 | 2.564.423 | 1.887.384 | | Parallel [kWh]: | 0 | 0 | 544.167 | | Totale [kWh]: | 3.094.079 | 3.421.623 | 3.288.752 | | Consumo totale di energia | | | | | LT [kWh]: | 951.563 | 857.201 | 857.201 | | MT [kWh]: | 2.553.309 | 2.771.086 | 2.637.265 | | Totale [kWh]: | 3.504.872 | 3,628.286 | 3.494.466 | | Risparmi | a superior de la constante | रक्षिंग्रीमार देनि | 20-11-00 | | Risparmi di energia annui [kWh]: | - | -123.415 | 10.406 | | Risparmi di energia annui [%]: | R. W. W. Torogood | -3,5 | 0,3 | - SYSTEM A: NH₃ - SYSTEM B: CO₂ FGB - SYSTEM C: CO₂ PC ### • YEARLY ENERGY & COST COMPARISON: EUROPE ### • YEARLY ENERGY & COST COMPARISON: EUROPE | | NH ₃ | CO ₂ FGP | CO ₂ PC | |--------------------|-----------------|---------------------|--------------------| | STOCKHOLM - SWEDEN | REF | - 22575 € | - 25782 € | | BERLIN – GERMANY | REF | - 15547 € | - 19918 € | | MUNICH – GERMANY | REF | - 15502 € | - 19681 € | | BARCELONA – SPAIN | REF | + 4815 € | - 625 € | | FLORENCE – ITALY | REF | + 5108 € | - 598 € | | ATHENS – GREECE | REF | + 7819 € | - 307 € | | – 0,06 € per kWh – | | | | ### • TOTAL MT CAPACITY: 850 kW - COMPETITION CO₂ COMPRESSORS - (30-38) m³/h: 10-15 PIECES NEEDED - N.2 RACKS EXPENSIVE SOLUTION - DORIN 6 CYL CO₂ RANGE 60 m³/h - 6 PIECES ONLY ARE NEEDED - N.1 RACK ONLY SIMPLER SOLUTION RACK WITH DORIN 6 CYL. TRANSCRITICAL COMPRESSORS 60 m³/h EACH courtesy PROFROID – GREEN & COOL 1. INTRODUCTION 2. CO₂ VS AMMONIA: SAFETY AND TECHNICAL DIFFERENCES 3. CO₂ VS AMMONIA: PERFORMANCE COMPARISONS - F-gas REGULATION: - STRONG INFLUENCE IN THE EUROPEAN REFRIGERATION INDUSTRY - NATURAL REFRIGERANTS: - THE BEST ALTERNATIVE FOR ALMOST ALL THE APPLICATIONS - INDUSTRIAL APPLICATIONS - CO₂ IS APPROACHING THIS FIELD AGAINST AMMONIA - CO₂ PROVIDES SOME TECHNICAL & SAFETY ADVANTAGES - CO₂ CAN ALSO PROVIDE COST SAVINGS - DORIN 6 CYLINDERS TRANSCRITICAL COMPRESSORS UP TO 60 m³/h ALLOW CO₂ TO APPROACH THE INDUSTRIAL MARKET IN AN EFFECTIVE WAY