

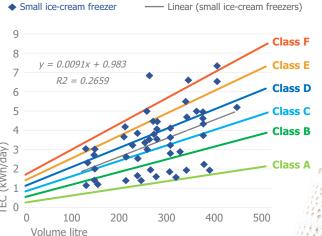
Business Case for Natural Refrigerants

NJX

CASE STUDY: NEXT GENERATION OF 2HP COMPRESSOR OPTIMISED FOR R 290

EU F-Gas Regulation

EU Ecodesign Regulation


Lot 1 & Lot 12

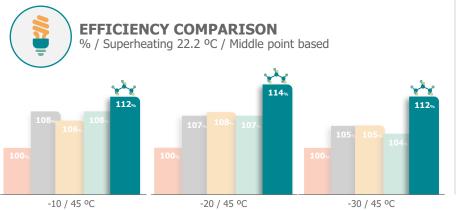
Energy labelling

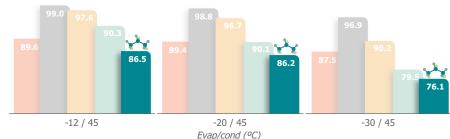
A preliminary indication of energy labelling has been prepared for small ice-cream freezers. The metric used to define the energy consumption is volume (compared to TDA, used for supermarket freezers).

What is the best option for Household and Light Commercial systems in low GWP future

Final Solution to Meet EU F-Gas Regulation

	HIGH GWP HFC's	LOW GWP HFC's	HC's	
SAFETY CLASS	A1 Not flammable	A2L Mildly flammable	A3 Highly flammable	STURAL VS
ENVIRONMENTAL IMPACT	Bad	Good	Excellent	SAN
REFRIGERANT COST	Ref	Very high*	Normal	REFRIE
COMPRESSOR THERMAL REGIME	Ref	Higher	Lower	Hydrocarbons
INVESTMENTS FOR SAFETY	Ref	Yes	Yes	Hydrocarbons are the most
SYSTEM EFFICIENCY	Ref	Higher	Much higher	sustainable choice for future
CHARGE LIMIT (IEC, EN60335-2-89)	No	150 g	150 g	


^{*} Not yet in mass production


Final Solutions Comparison

R404A

■ A2L #1 ■ A2L #2 ■ A2L #3 ■ R290

Propane (R290) is the best in efficiency and in thermal level

There are still legislative barriers for larger use of HC's and A2L's.

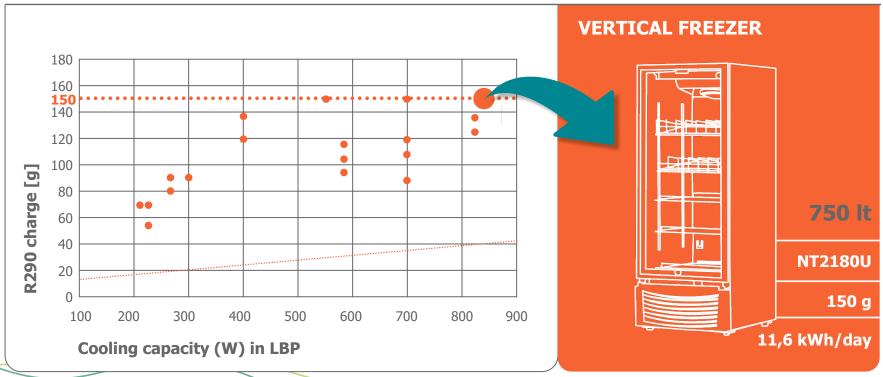
Charge limit in HH UL

Increment of HH limit to 150g in US

Charge limit in CO IEC and UL

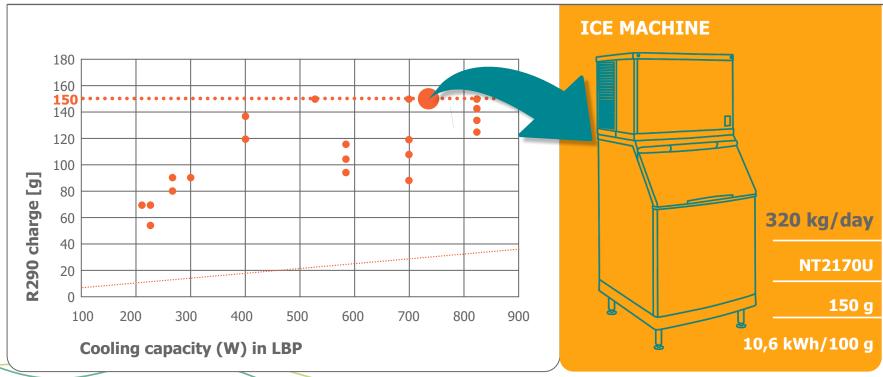
IEC/SC61C/WG4 is working on CO charge limit to be published in 2018

Relevant international & standards and flammable refrigerants limits


STANDARD	TITLE	APPLICATION	CHARGE LIMIT	
EN IEC 60335-2-24	Particular requirements for refrigerating appliances, ice-cream appliances and ice-makers	Domestic refrigeration	Up to 150g of flammable refrigerant per circuit	150g OK
EN IEC 60335-2-89	Particular requirements for commercial refrigerating appliances with an incorporated or remote condensing unit or compressor	Any refrigeration appliances used in commercial situations	Up to 150g of flammable refrigerant per circuit	150g? NOK
EN IEC 60335-2-40	Particular requirements for electrical heat pumps, air conditioners and dehumidifiers	Any air conditioning and heat pump applications	Up to 1kg and 5kg depending upon application	1 kg or + OK
EN378	Mechanical refrigeration systems used for cooling and heating - safety requirement	Any refrigeration, air conditioning and heat pumps: domestic, commercial and industrial	Variable, depending upon application	

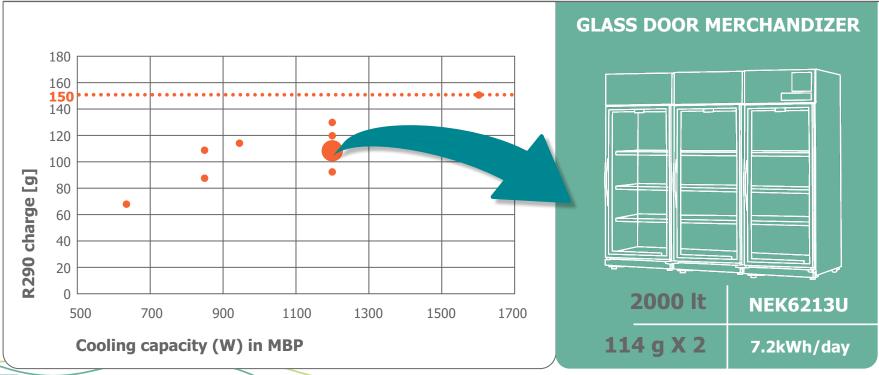
150g (5,3 oz) CHARGE LIMIT

LT PROPANE CABINETS CHARGE



150g (5,3 oz) CHARGE LIMIT

LT PROPANE CABINETS CHARGE



150g (5,3 oz) CHARGE LIMIT

MT PROPANE CABINETS CHARGE

IEC 61C WG4 Task: Ammend IEC60335-2-89 to allow higher limit of charge of flammable refrigerant with necessary additional requirements to keep the risk the same as with the current limit of 150 g

- Last Draft for Comments (DC) document that considers 500 g limit for propane charges and which will also allow the use of A2L safety class refrigerant alternatives, was discussed in August 2017 meeting in Mainz.
- Outcomes of Mainz meeting will be submitted to the SC61C committee during Plenary Meeting of the SC61C in October 2017 in Vladivostok to go for first official vote as a Committee Draft (CDV). Positive Vote on CDV/FDIS will allow new charge limits introduction still in 2018.

Experts in the Working Group 4 are representing major global manufacturers like AHT, Daikin, Electrolux Professional, Emerson, Epta, Hussmann, Panasonic, Porkka, Sanden, True Manufacturing,

embraco

Mitsubishi Electric, United Technologies, Whirlpool, etc

A new IEC standard for the maximum allowable flammable refrigerant charge would influence the adoption of the same standard in all regions. "This would be a reference, the global standard."

New IEC EN Charge Limit

High Efficiency

NJX *Main futures*

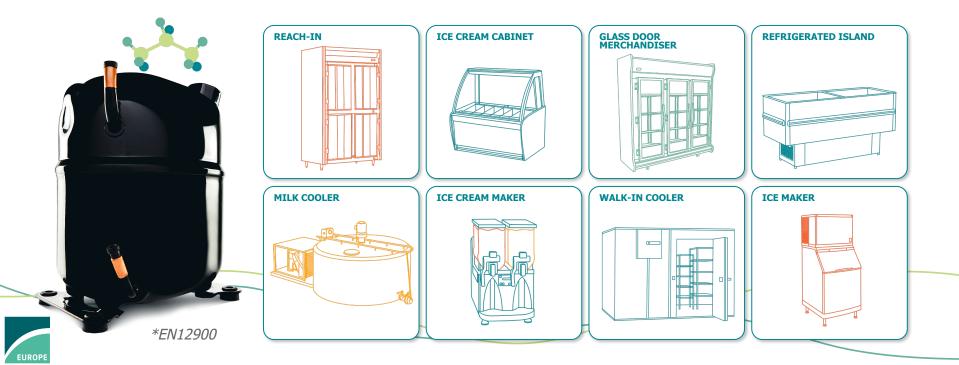
New displacement 38cc to stretch cooling capacity above 2HP for LBP

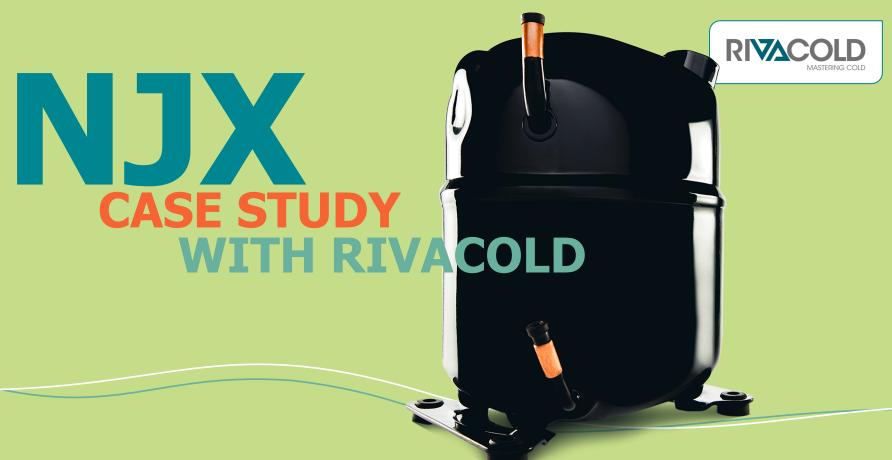
New suction muffler optimized for high efficiency and liquid handling

Optimised motor and new valving system for robust performance

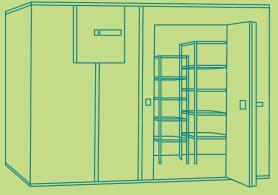
Approved for Cat.2 of PED

NJXPreliminary Performance with R290


MODEL	ELECTRICAL MOTOR	DISPLACEMENT (CC)	НР	APPLICATION	TORQUE	COOLING TYPE	COOLING CAPACITY (W)	COP (W/W)	
NJX2215U	1 phase	37.9	2 1/4	LBP	HST	Fan	840	1.13	
NJX2215U	3 phase	37.9	2 1/4	LBP	HST	Fan	870	1.2	
NJX9250U	1 phase	37.9	2 1/4	MBP/HBP	HST	Fan	2619	2.06	
NJX9250U	3 phase	37.9	2 1/4	MBP/HBP	HST	Fan	2653	1.97	

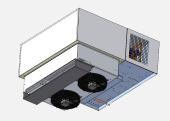

Testing condition: EN21900 | LBP -35/40/20/35/40 | MBP -10/45/20/35/45 | Models under development, performances to be confirmed

NJX

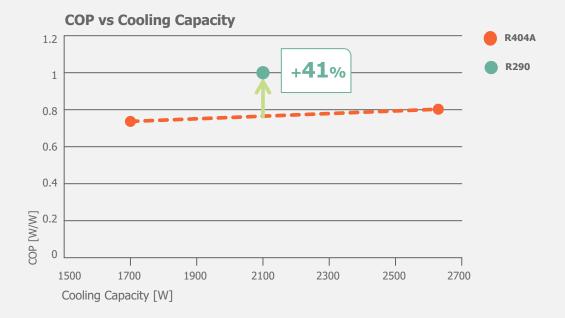

Ideal solution for all commercial application

NJX Case study with Rivacold

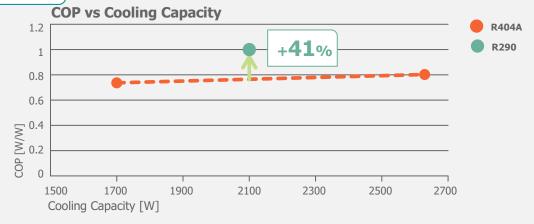
Walk-in rooms

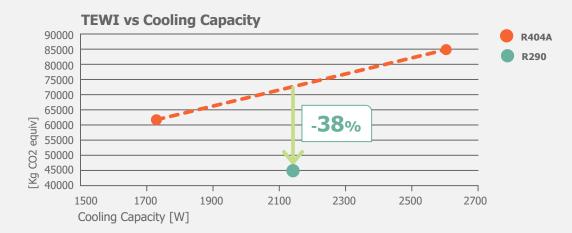


NJX Case study with Rivacold


Testing Details REFRIGERANT	SMALL BLOCK SYSTEM R404A	MEDIUM BLOCK SYSTEM R290	LARGE BLOCK SYSTEM R404A
CONDENSER TYPE	Air Cooled	Water Cooled	Air Cooled
	Single compressor	Two compressor	Single compressor
DISPLACEMENT [CC]	68	2*38	108
SYSTEM CHARGE [KG]	1.7	2*0.145	2.35
COOLING CAPACITY [W]	1755	2165	2614
POWER INPUT [W]	2406	2015	3316
COP [W/W]	0.73	1.07	0.79
% OF RUNNING TIME	75	75	75
WATER INLET TEMPERATURE [°C]		20	
AMBIENT TEMP [°C]	24.4	31.2	25.5
INTERNAL AVG TEMP [°C]	-18.4	-19.3	-19.5
EVAPORATING TEMP [°C]	-28.8	-30.5	-29.9
CONDENSING TEMP [°C]	33.1	23.3	36.6
TEWI [KG CO2 EQUIV]	61517	44880	84909
EMISSION REDUCTION IN TONS OF CO2 IN 10 YEARS ANNUAL ENERGY COST SAVING [EURO] w/ 0.1 – 0.3 euro(kWh		27.8 541- 1624	

NJX Case study with Rivacold





Case study with Rivacold COP & TEWI Benefits

CONCLUSIONS

We support use of natural refrigerants, considering them as a best option to meet EU regulations (f-gas & ecodesign) supporting global effort of climate change mitigation.

Expected charge limit change will allow use of propane with larger number of appliances in light commercial segment.

New high efficiency NJX product was designed for larger cooling capacity (2HP+) systems using flammable refrigerants.

Clear benefits in efficiency can be achieved with use of liquid cooled condensers lowering condensing temp.

R290 is outperforming R404A in terms of environmental impact.

Thank you

Business Case for Natural Refrigerants