

Technical initiatives for further spread of CO₂ refrigeration system

Water cooling condensing unit with heat reclaim,
 TC CO2 Rack System for Large warehouse & solution for store renovation —

Panasonic Appliances Company
Cold Chain Business Division
General Manager Manabu Onishi

Agenda

- 1) Background & Achievement
- 2) Technical Strategy for CO2 system
- 3) Technical development for encouraging further spread of CO₂ system
- 4) Issues & Action Plan

#GoNatRefs

Background & Achievement of CO2 system

Our CO2 system was promoted by government support and its high evaluation

2005 Participated in METI (NEDO) project

Basic research period

2009 Started Field Test in supermarkets

2010 Launched CO2 condensing unit

- **★**Grand Prize for Ozone Layer Protection & Global Warming Prevention (2010)
- **★**Energy Conservation Grand Prize (2013)
- 2014 MOE project "Energy efficient refrigeration and Air-conditioning Equipment based on Natural Refrigerant Good Practices" accelerated further spread
 - ★Electrical Science and Engineering Promotion Award (2014)
 - **★**Chairman Prize of ECCJ (2014)
- **2015** Launched Pressure Adjust Control type CO2 condensing unit & side flow type 10HP condensing unit
 - **★**Grand Prize for Ozone Layer protection & Global Warming Prevention (2015)
 - **★**MOE Mister Prize for Global Warming Prevention Activity (2016)
- **2016** Started exporting 2 HP condensing unit to Europe (2018: 10HP)
- **2018** Launched 30HP Cascade system

#GoNatRefs

1 store

installed

FamilyMart

(2016 Jan)

CO₂ system installation (Overseas)

13 stores

installed

1 store

China/Asia Europe

METRO

EU: +250 PJs

installed (2017 May) 13 stores installed (2015 May) Already installed in China, Taiwan, Indoensia & Malaysia

12/02/2019 - Tokyo, Japan

CO₂ system installation (Europe)

CO₂ system installation (China)

2018 July: PAPRSDL CO₂ RACK system @CSF Market (Beijing)

12/02/2019 - Tokyo, Japan

#GoNatRef

CO2 Refrigeration System Development

Technology development for encouraging further spread of CO₂ system

- 1. Further energy saving (better Customer Value)
 - ·Total energy saving by heat reclaim

- 1. Capacity Maximization (for various customers)
 - ·Large-scale project such as logistics warehouse etc
 - ·Wider line-ups to fulfill customer's requirement

- 3. Solution for store renovation (Further spread)
 - ·Reduction of man-hours for installation

ATMO CO2 water-cooled system with heat reclaim sphere

Energy saving

Input energy ⇒ Boiler, Cooling fan, Pump, Condensing unit

Environmental impact

CO₂ emission ⇒ Direct impact (Refrigerant leakage) Indirect impact (Electric power, Heavy oil)

[Estimation condition]

Electric power CO₂ emission factor : 0.5 kg-CO₂/kWh

Heavy oil CO₂ emission factor: 2.7 kg-CO₂/L

Refrigerant leak rate: 16 %

12/02/2019 - Tokyo, Japan

ATMO CO2 water-cooled system with heat reclaim sphere

- ② Boiler input reduction
- 3 Increased condensing unit input but significant boiler input reduction

Environmental impact

- 2 Boiler input reduction
- 3 Since the GWP of the CO_2 is 1/2090of the R410A, it is negligibly small

Both of energy saving and environmental impact are

significantly reduced

ATMO sphere

CO2 water-cooled system with heat reclaim

Configuration of heat exchangers

Problems for supplying high temperature hot water

Since the amount of water is reduced, insufficient cooling performance

- \Rightarrow Enhance the effect of "Split cycle" by flowing water the intercooler first
- \Rightarrow Cooling performance was secured by providing cooling water

to the secondary gas cooler and exhausting heat

Cooling side		Heating side	
High pressure [MPa]	10.1	Hot water supply inlet [°C]	20.5
Low pressure [MPa]	2.19	Hot water supply outlet [°C]	70.4
2 nd discharge gas [°C]	93.7	Water heating capacity [kW]	29.4
Gascooler outlet gas [°C]	20.9	Hot water supply amount [L/min]	8.5
Cooling capacity [kW]	28.2	Cooling water inlet [°C]	20.7
Condensing Unit input [kW]	16.2	Cooling water outlet [°C]	25.7
COP [-]	1.74	Rejected heat [kW]	15.0

Even when supplying hot water, sufficient cooling performance was secured

Technology development for encouraging further spread of CO₂ system

1. Further energy saving (better Customer Value)

• Total energy saving by heat reclaim

- 1. Capacity Maximization (for various customers)
 - ·Large-scale project such as logistics warehouse etc
 - ·Wider line-ups to fulfill customer's requirement

- 3. Solution for store renovation (Further spread)
 - ·Reduction of man-hours for installation

ATMO sphere

TC CO₂ Rack system

■ Installation in China
TC CO2 Rack system (booster) (MT/LT)

Produced in PAPRSDL

TC CO₂ Rack system

■ Specification comparison

TC CO₂ Rack System (Booster) [Large unit]

System Type: Indoor (Gas cooler: Outdoor) Centralized Large system

(= RACK System, "Rack")

Compression type : Booster (2 stage compression by multiple compressors

<Feature>·Centralized 2 system for MT+LT

- For large facility (Not for small one)
- ·Large amount of refrigerant
- ·Iron or Stainless piping

TC CO₂ Outdoor Condensing Unit [Small/Medium unit]

System Type: Outdoor (Package unit) Distributed small/Medium system

(= Outdoor Condensing Unit, "OCU")

Compression type : 2 stage compression rotary

(single compressor for 2 stage compression)

<Feature>·Flexible installation for both MT/LT system

For Small & Mid facility

(Need large number of units for large facility)

- ·Small amount of refrigerant
- ·Compact design due to outdoor package unit, Easy to install

TC CO₂ Rack system

■ CO₂ Rack for large warehouse

Power Source	3 phase 50/60HZ – 200V		
AT (as rated condition)	+32℃		
ET range	-45℃ ~ -20℃		
AT range	-15℃~+43℃		
Rated Output	≒ 50HP	≒ 80HP	
Regal Ref. ton	15.1 tons	18.9 tons	
Comp. Q'ty (MT/LT)	4 (2/2)	4 (2/2)	
Cooling Capacity Et=-32℃	41.7 kw	63 kw	
Cooling Capacity Et=−40°C	29.1 kw	43.2 kw	

⇒ OCU-HS 20HP × 2 units or OCU-CR 10HP × 5 units

⇒ OCU-HS 40HP × 2 units or OCU-CR 15HP × 6 units

Launching 50HP & 80HP for LT application

ATMO sphere

CO2 unit modularization

10HP Module

20HP Module

• Realizing various combination of larger output power system by utilizing standardized CO2 unit

2 Flexible and variable combination by multiple connection

3NO NEED to submit report to authority if output power is below 100HP because of other manufacturers

12/02/2019 - Tokyo, Japan

Technology development for encouraging further spread of CO₂ system

- 1. Further energy saving (better Customer Value)
 - ·Total energy saving by heat reclaim

- 1. Capacity Maximization (for various customers)
 - ·Large-scale project such as logistics warehouse etc
 - ·Wider line-ups to fulfill customer's requirement

- 3. Solution for store renovation (Further spread)
 - Reduction of man-hours for installation

Example of Store renovation

Full Store Renovation without store close

■Store Information

Grand Fuji Matsuyama

■CO2 Condensing unit : 20HP×9、15HP×4、10HP×1

■Showcase : 122

■Energy saving :approx. 52%(vs previous R22 system)

■CO₂ Emission reduction :approx. 375 ton (2017 result)

■Address : Miyanishi1-2-1, Matsuyama

■Store Open :2017/3/1(Renovation)

■Floor Space :28,433m²
■Open Hour :9:00~23:00

Example of Store renovation

Full Store Renovation without store close

Construction Method

Daily progress method

Duration: 2 months

Showcase renovation: Partial renovation with temporal enclose in store from a month ago

- ■The most important point
 Explain well to the customer
 about schedule & installation method
- ■Necessary point to run Daily progress method
 - Prior construction
 - Confirm other condition provided by store

Example of Store renovation

Analysis and issue (system by system renovation without store close)

```
(1) Prior construction (Secure installation space of CO2 unit and install new piping)
      •CO2 unit Installation
      •Install new Power Distribution Board (Main cable connection is construction work)
      • Electrical & refrigerant piping construction between CO2 unit and showcase
(2)Showcase replace
       Store close (PM10:00) \rightarrow Store product Removal \rightarrow Showcase change (old to new)
       → complete electrical & piping connection (N+1day AM5:00)
(3) Commissioning
    1)HFC unit
                                                                AM7:30 Displaying goods
                                     Charging
                                                    Settings
        Air-tightness
                      Evacuation
                                                                  120min
    2CO<sub>2</sub> unit
         Air-tightness
                           Evacuation
                                            Charging
                                                                Setting
                                                                               AM9:30 Displaying goods
*120min longer than HFC ⇒ Item TO BE improved (Consider to shorten each installation process)
```

#GoNatRefs

12/02/2019 - Tokyo, Japan

Issues & Action Plan

Product Development

- ·Capacity Maximization: Introduce even larger capacity line-up
- ·Energy Saving: Total Thermal Utilization by heat reclaim and optimum control

CO2 Family Formation

- ·Solution for Store Renovation: Collaborative Development of Tools for efficient installation
- •Installation Training: Continue efforts for training & Set up Certification rules
- ·Combination with other Show-case OEMs: Develop the Controller to enable the operation

Further Cost Reduction

·Accelerate the Value Engineering at every aspects (Material, Parts, Installation & System)

Thank you for listening.

