

ABOUT EMBRACO

MORE THAN 20 YEARS GLOBAL LEADER IN NATURAL REFRIGERANTS

CASE STUDY | MOTIVATIONS & REQUIREMENTS

CUSTOMER'S MOTIVATION

Provide an ice cream freezer compliant

with the specifier's requirement for local

market.

END USER REQUIREMENTS

- ✓ Low energy consumption;
- ✓ Low **temperature** variation;
- ✓ Capacity to work perfectly even with voltage fluctuations;
- ✓ Low **noise**.

the customer's challenge

CASE STUDY | SYSTEM & SUGGESTIONS

ABOUT THE APPLICATION

Application: Vertical Ice-cream cabinet

Internal volume: 327L

Original compressor: NEU2168U

Compressors are a critical part of the system on Ice Cream cabinets, representing most of the energy consumption in this kind of application.

ALTERNATIVES TO IMPROVE ENERGY EFFICIENCY

- Change to the most efficient R290
 Fullmotion inverter compressor;
- Glass door could be exchanged (double glass > triple glass);
 - Evaporator and condenser could be replaced;
 - Replacement and adjustment of expansion valve could be done.

CASE STUDY | CHOSEN SOLUTION

FMFD

More efficient vs. FM (VNEU²)

VNE Family ~3,0 mm/s
FMF Family ~1,4 mm/s

quieter
than VNEU
quieter
than NEU

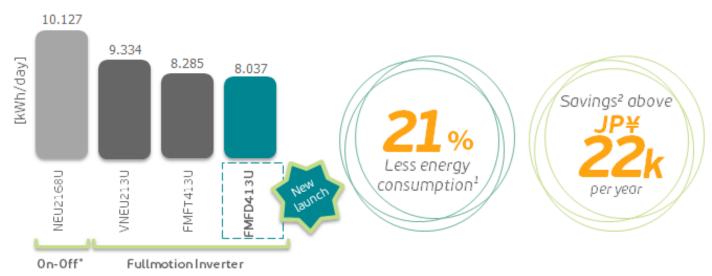
Reduces
SKUs Complexity

^{1@} EN12900_HH / @ ASHRAE_LBP

² VNE was the most efficient Fullmotion inverter compressor before FMF launch in commercial applications

FIVIFD Main applications

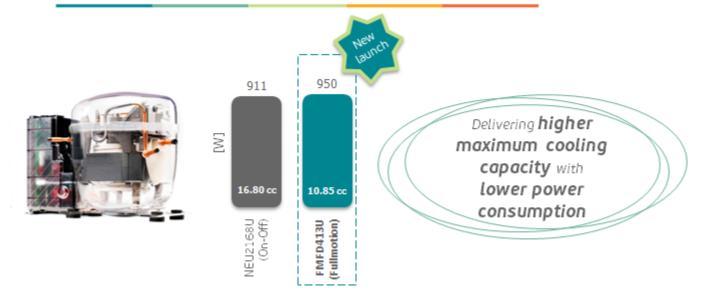
CASE STUDY RESULTS


Higher
Maximum Cooling
Capacity

Power Consumption Comparison

Energy Saving

^{*}Original compressor


¹ Comparison vs. on-off model

² Considering one equipment and a simplified energy rate of JP¥ 30 per kWh

Maximum Capacity Comparison

Higher Maximum Cooling Capacity

Case Study Details

Testing Conditions:

• ASHRAE (-23.3°C/54.4°C)

• FMFD @Maximum Speed

Environmental Impact | CO2 Emissions

Environmental
Impact

	ON-OFF (NEU2168U)	FULLMOTION INVERT (FMFD413U)
GWP - Global Warming Potential	3	3
L - Leakage rate (kg/year)	0.003	0.003
N - Life time (years)	10	10
M - Refrigerant charge (kg)	0.12	0.12
a - Recycling factor (%)	0	0
E - Energy consumption (kWh/year)	3,70	2,93
ß - Emission from energy gen. (kgCO2/k	Wh) 0.415	0.415

of reduction on the environmental impact due to CO2 emissions

Case Study detail

TEWI (Total Equivalent Warming Impact) is a measurement of the total CO2 emissions from an equipment during its operating lifetime

embraco

www.embraco.com

EMBRACO'S PROPRIETARY INFORMATION