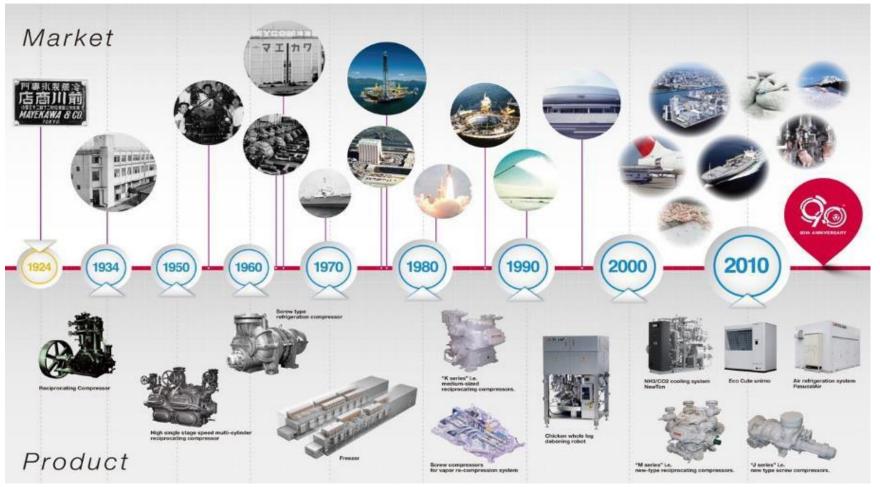


CO₂ Ice Bank Answer to the next requirements

2019, 2, 12

HIDERHIRO KITAYAMA


MAYEKAWA MFG.CO.,LTD.

Mayekawa's Development

Mayekawa started as a manufacturer of refrigeration equipment, and expanded its scope to processing and system designs

Current status and Futures of Natural Refrigerant system

Many equipment using natural refrigerant are introduced in the market, but the applications are limited to low temperature refrigeration. In many applications, the conversion to the natural refrigerant is difficult. The main reason is the limited variety of equipment compatible with natural refrigerant. Mayekawa focus on the development of new equipment that will expand the range of natural refrigerant applications.

Possibilities are boundless, such as industriales shown below and air conditioning

Logistics

Oil, Gas & Chemical

Food

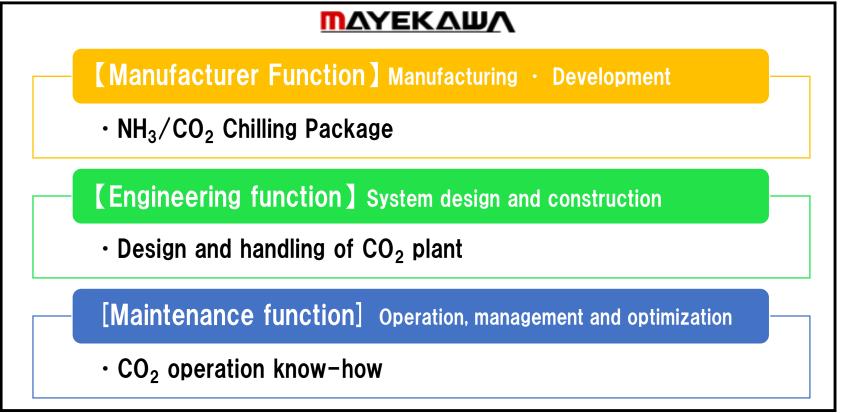
Breweries

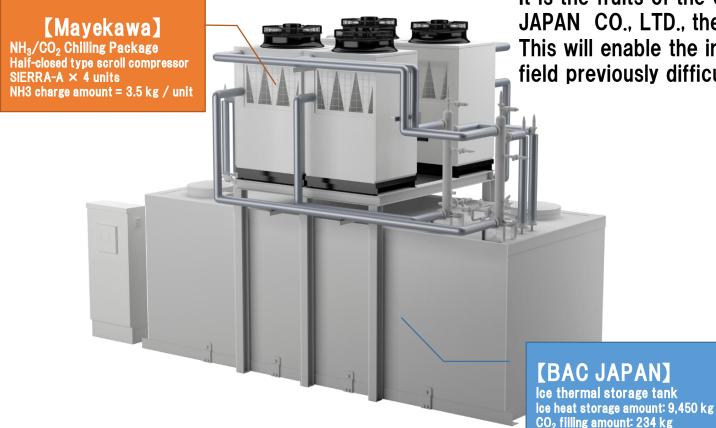
Dairy

Beverages

Environment

Leisure


Marine


To the next stage of Natural refrigerant

To reduce CO₂ emission, Mayekawa considers it is essential to increase the applications of natural refrigerant, and is developing variety of equipment with its technological expertise and years of experience in the natural refrigerant,

CO₂ Ice Bank

 CO_2 Ice Bank is one of applications using CO_2 refrigerant. It is the fruits of the collaboration between Mayekawa and BAC JAPAN CO., LTD., the leading manufacturer of Ice Bank. This will enable the introduction of CO_2 refrigerant technology to the field previously difficult to apply.

MAYEKAWA

Advanced CO₂ refrigerant Technology.

Production · Design · Construction · Maintenance · Abundant achievements

BAC JAPAN CO.,LTD.

Advanced Ice Bank Technology.

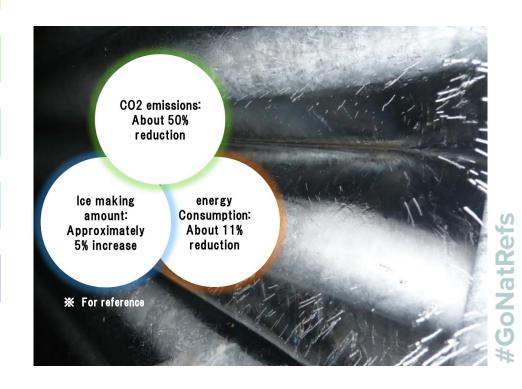
Design · manufacturing · operation know-how · abundant achievement

MYCOM MYCOM

Features of CO₂ Ice Bank

Non-Freon Environment Friendly System

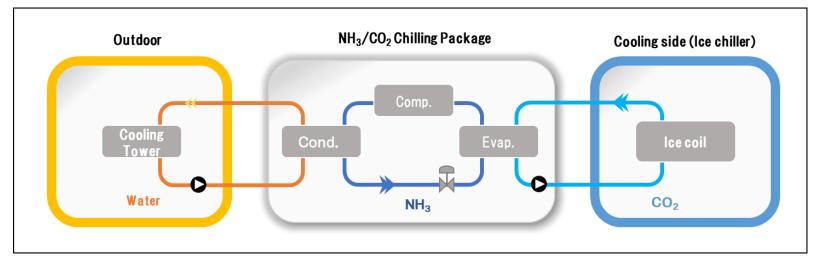
Efficient utilization of the heat transfer surface of the coil


High performance with uniform cooling and high evaporating temperature

Ensured uniform ice build up on all over the coil

No oil, no deterioration of performance

No contamination of the chilled water in case of unlikely event of refrigerant leakage from the coil.


- •Conventional ice banks use R22 refrigerant or its alternative HFC refrigerant, that are inherently injurious to environment.
- •CO₂ Ice bank eliminates the inherent difficulty of CO₂ refrigeration system by adopting the revolutionary CO₂ secondary refrigerant system.

CO₂ Ice Bank system outline

Integration type	Separate type		
	NewTon		

Application and specification of CO₂ Ice Bank

Various industrial chilled water

Load leveling by thermal storage

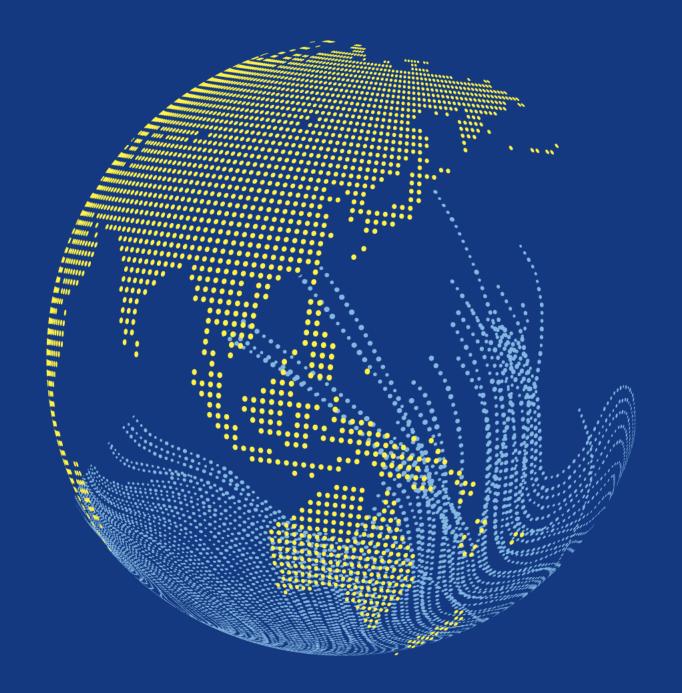
Chilled water for air conditioning

Demand cut of daytime power by nighttime thermal storage

For any chilled water requirement

Dairy - Beverage

Food - meat


air conditioning

CO ₂ ICE Chiller Specifications **For reference								
Model	TSU-125R-C02		TSU-250R-C02		TSU-500R-C02			
Outer dimensions (mm)	W5,830×L1,320×H2,150		W5,830×L2,320×H2,150		W11,070×L2,320×H2,150			
Ice thermal storage amount (kg)	4,725		9,450		18,900			
Unit type	SIERRA-A	SIERRA-W	SIERRA-A	SIERRA-W	SIERRA-A	SIERRA-W		
Number of SIERRA (units)	2		4		8			
Ice making capacity (kW)	42	45	84	90	168	180		
Power Consumption (kW)	19.8	17.6	39.6	35.2	79.2	70.4		
CO2 Charge (kg)	117		234		469			
Number of NewTon-CH (units)	-		1		2			

Thank you for listening.

