

Rob Arthur, PE/PEng CTA Architects Engineers Principal

Natural Refrigerant Technologies

A Design Consultants Perspective

CTA Architects Engineers

400+ person Architectural Engineering Firm

17 Offices

Work National and International

Refrigeration Engineering Division 20+ Engineers/Designers/Commissioiners

Project Role - Engineer of Record

#2 Projects

Albertsons

Carpinteria, CA (NH3/CO2 Cascade)
Greenchill Platinum
First 100% Natural Refrigerant Grocery
store in the United States

DeCA

San Antonio, TX (NH3/CO2 Cascade)
Kanto Plains, Japan (NH3/CO2 Secondary)

Walgreens

Chicago, IL (Transcritical CO2)

Wholefoods

Northern CA (Transcritical CO2 in Design)
Multiple Secondary Glycol Systems

Target

Columbia, MS (R134a MT/CO2 Cascade LT)
Los Angeles, CA (R134a MT Secondary Glycol/LT CO2 Cascade)

Walmart

Multiple R-407a MT Secondary Glycol/LT CO2 Secondary

SuperValu

Boston, MA (First Greenchill Platnium Store)
(R404a MT Secondary Glycol/LT Secondary CO2)
Multiple MT Secondary Glycol

Why Movement to Natural Refrigerant Systems

Concerns with high GWP Refrigerants

- Leak rate concerns
 - Global Warming
 - Cost of Refrigerant
 - EPA Penalties
- Conversion
 - Avoid future refrigerant conversions
- Energy Reduction
- All Advanced Refrigeration systems
 - Reduce amount of high GWP refrigerant charge
 - Utilize a lower GWP refrigerant
 - Eliminate high GWP refrigerant

Progression to address High GWP refrigerant charge

- HFC Distributive Systems
- HFC MT Secondary Glycol Systems
- HFC LT Secondary CO2 Systems
- HFC/LT CO2 Cascade/MT Secondary CO2
- NH3/LT CO2 Cascade/MT Secondary CO2
- Transcritical CO2 Booster System
- Enhanced Transcritical CO2 Booster System
- Hydrocarbon Micro Distributive

Advanced Refrigeration System Design

- Build time into schedule for full development
- Bring all stake holders together
- Designate one controls manufacture and integrated them early in the design process
- Utilize Refrigeration Consultant/Vendor as hub that receives, distributes and coordinates with all stake holders.
 - Owner
 - Architect/Engineers
 - Equipment Manufacturer
 - Controls Manufacturer
 - Contractor

Benefits of a Natural Refrigerant System

- Lowest Life Cycle Costs for some system types.
- No more major Refrigerant Conversions every 10 to 15 years.
- Energy Efficiency (in the right application)
- Environmental Benefits
- Future Proofing
 - Phase Outs, De-Listing, Taxes, Fines, Charge Limits
 - When there is a cost/penalty for CO2 emissions this will change all the financial equations and business cases for natural refrigerant systems.

	R-407a	R-407a	R-407a	R-407a
	Central System	Distributed System	Med Secondary Glycol	Med Secondary CO2
			Low Secondary CO2	Low Secondary CO2
Life Cycle Cost	100%	98%	113%	104%
TEWI Direct (metric Ton CO2-e)	14,715	9,479	2,141	2,142
TEWI Indirect (metric Ton CO2-e)	18,053	18,053	20,761	18,053
TEWI Total (metric Ton CO2-e)	32,768	27,531	22,901	20,194
TEWI % of Baseline	100%	84%	70%	62%

		R-407a High Side	NH3 High Side	
		Med Seconday CO2	Med Seconday CO2	Med/Low Transcritcal CO2 Booster
Life Cycle Cost		98%	114%	20 M. Marketh ac
TEWI Direct (metric Ton CO2-e)		2,142	1	3
TEWI Indirect (metric Ton CO2-e)		16,247	15,345	15,345
TEWI Total (metric Ton CO2-e)		18,389	15,346	15,347
TEWI % of Baseline		56%	47%	47%

What Future Holds

- Don't believe Advanced systems of the future will look like current advanced refrigeration systems of today.
 - Standardized
 - Assembly Line
 - Modules
 - Off the shelf package units
 - Less customization

System Types

- LT Cascade/MT Secondary CO2
 - Ammonia or Hydrocarbon over CO2
 - Low GWP Synthetic over CO2
- CO2 Transcritical/CO2 Enhanced Transcritical
- Micro Distributive

business case

natural refrigerants

25 & 26 June - Atlanta, Georgia

Contact Information

Rob Arthur, PE/PEng CTA Architects Engineers

roba@ctagroup.com

406-544-7825 cell

800-757-9522 office