

First integrations of industrialized Magnetic Cooling

...devices into refrigerated cabinets

About Cooltech Applications

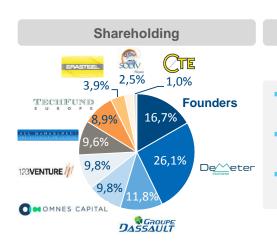
Key figures

Patents
covering +40
countries

A successful
10 10-year R&D

phase

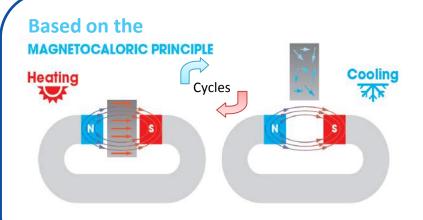
Main International Partners


Recent Awards

Shareholding structure and management

Management

- Christian Muller Founder, CEO and CSO
- Jean-François Maire
 General Manager
- Vincent Delecourt
 Director Sales & Marketing



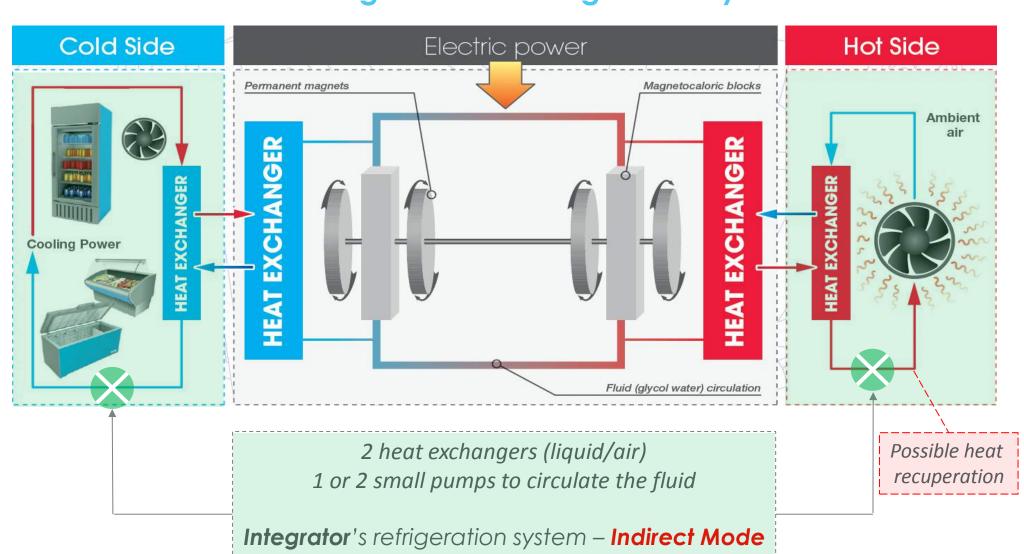
The company is now entering the commercialization process by starting partnerships with OEM's and manufacturers for preparing the product launch (West Europe, America)

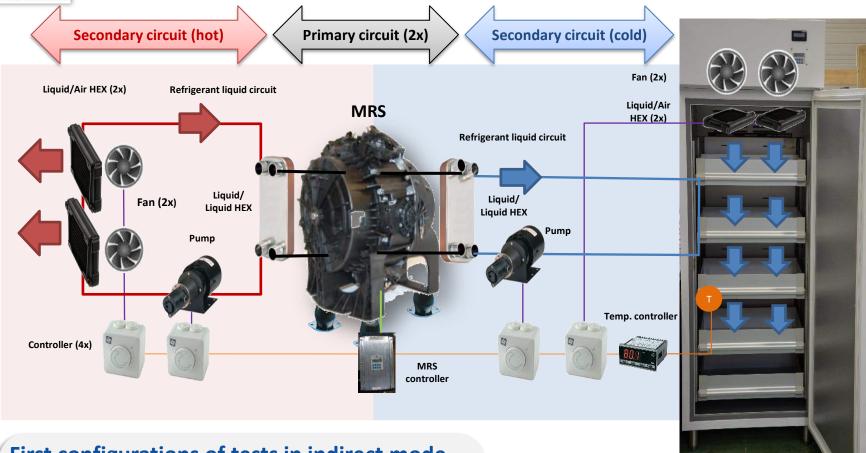
The Magneto-caloric technology

Magnetic
Refrigeration,
getting energy
from temperature
changes in a
material

 $E = m \cdot Cp \cdot \Delta T$

- No refrigerant gas (water based coolant liquid)
- o Better energy consumption ratio (COP)
- Reduced noise and maintenance (expected)
- o Designed firstly for the **Commercial Refrigeration**


First generation of machines (150-700W)


Product integration into refrigeration systems

Test set-up

First configurations of tests in indirect mode

- On-going tests in Direct Mode
- Realized with specific Heat Exchangers and Fans adapted for magnetic refrigeration

Cabinet (volume 500l)

Measurements in indirect mode

Cabinet volume500 liters (17.7 scf)

Admissible ambient temperature from 15°C to 25°C (~75°F)

Power consumption 35W (12

Cooling power

Motor speed

35W (120 Btu/h) **200W** (680 Btu/h) **116 rpm** (1,93 Hz)

T liquid	+4°C	+4,9°C	+6,6°C
T air (ref. position)	+5,3°C	+6,7°C	+8,5°C
ΔT liquid/air	1,3 K	1,8 K	1,9 K

Equipment integration test bench

System performance

Cooling Power: 200 W (680 Btu/h)

(*) Magnetic Refrigerator (F = 1,1 Hz)			
	Absorbed Power		
	w		
Hydraulic mode	Indirect mode		
Pumps	8		
MRS * (motor efficiency 90%)	35	COP 5,7	
Fans (heat ex. hot)	3		
Fans (heat ex. Cold)	3		
Total	49		
Total COP	4,08		

(**) Standard Butane Refrigerator				
	Absorbed Power			
	w			
Pumps	-			
Compressor	79	COP 2,5		
Fans condensor	12			
Fans evaporator	13			
Total	104			
Total COP	1,92			

COP Comparison between a magnetic refrigerator and a standard bottle cooler

Energy Savings >50%, a key factor for future value proposition

^(*) Machine with first generation magneto caloric alloys

^(**) Measures done by an OEM, partner of Cooltech

Barriers and Solutions

Heat exchanger (Liquid/Air)

- Collaboration with manufacturers to design adapted HEX (Automotive, Electronics industry)
- Parameters: mini-channels (1/32 inch) and high density of finned coils

Maximize the energy output while maintaining enough energy in the system for the regeneration cycle

ΔT adjusted to the MRS behaviour (low thermal pinch, optimized thermal balance)

Magneto caloric Materials

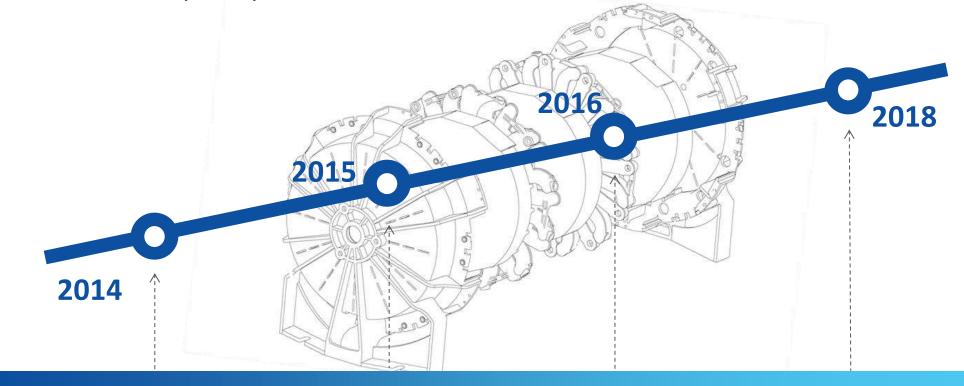
- New generations of alloys(2 K/Tesla => 3,5 Kelvin/Tesla)
- Additional manufacturers (Vac, BASF, Erasteel,...)

an emerging industry

The **Key** element

Generate the internal energy that is amplified (Magnetic Cooling cycles)

Direct vs. Indirect Mode


- Increase the span of temperature (by +5 °C) and global thermal efficiency
- Increase the COP (~ +20%)

Internal parameters

- Frequency (from 1 Hz to 3hz)
- Magnetic alloys (new generation)
- Optimized electric motor

New design of machines

- Very low temperature
- Increase cooling power

Commercial perspectives

A huge market potential to be gradually addressed

Commercial Refrigeration

Air-Conditioning

Domestic Refrigeration

Transport

Next steps (2015-2016)

- Continue doing equipment optimizations before the product launch in several market segments
- Start new partnerships (manufacturers, OEMs, food industrials) in new geographies (America,..)
- Complementary development for further applications with new product specifications

Conclusion

Magnetic Cooling... a relevant complement of natural refrigerants developments initiative

In line with the already existing and forthcoming regulations

A key opportunity to provide differentiation in the fields of Refrigeration and Air conditioning

25 & 26 June - Atlanta, Georgia

Cooltech Applications www.cooltech-applications.com