

Rob Arthur, PE/PEng Principal CTA Architects Engineers

US Defense Commissary Agency Project
Ammonia/CO2 Cascade Refrigeration
System, from design through completion.

Who is the Defense Commissary Agency (DeCA)

- Supermarket to the Military
- Global chain of 250 supermarkets on military bases
- Approximately \$6B in annual sales

- Existing 117,000 Sq/Ft Commissary in San Antonio, TX
- Sustainment Project (Remodel)

Project Design Partners

- DeCA
- EPA
- NREL (Department of Energy)
- Design Consultants

Project Funding Support

Commercial Building Partnership

Goals of Project

- Low Global Warming Potential (GWP) System or 100%
 Natural Refrigerant
- More Energy Efficient then Industry Standard Systems
- Eliminate Safety concerns
- Serviceable Equipment
- Reasonable Costs

Possible Systems that met Goals at the time of project

- HFC/CO2 Cascade System
- Transcritical CO2 Systems
- Ammonia/CO2 Cascade System

System Selected

- Ammonia/CO2 Cascade System
 - Only 100% Natural Refrigeration system at the time that could be used in this environment and still meet the goal of energy reduction.
 - This was a demonstration project and did not have a favorable ROI. Initial Simple ROI was over 20 years and even though equipment was less then expected ROI is still calculated to be over 20 years.
 - 81 lbs. of Ammonia / 1800 lbs. of CO2

System Selected

#1 Project overview

System Selected

#1 Project overview

System Selected

Project overview

System Selected

#2 Efficiency Analysis

DeCA Lackland - Comparison of Refrigeration System Energy Use				
		Baseline System		Proposed Systems
System	Subsystem	4-Rack R-404A System		Cascade NH3 Over CO2 System
Rack Systems	LT Compressors	170,671 kWh		
	MT Compressors	225,719 kWh		
	Primary Compressors			277,369 kWh
	Secondary Compressors			81,105 _{kWh}
	Secondary Pumps			6,531 kWh
	SubT Rack Systems	396,390 kWh		365,005 kWh
	Energy Use Compared To Existing System			7.9% Less

- The actual first cost differential between the NH3/CO2 system and a R-404A system turned out to be less than projected.
 - The first cost considering equipment, installation, piping and refrigerant was a \$334K premium for the NH3/CO2 system.
 - Annual maintenance cost savings due to reduced refrigerant costs are estimated at \$5,500 annually.
 - Energy savings of \$3,100 annually remain a projection with actual energy costs to be evaluated over the next year with the system installation completed.
 - The cost savings for 'future proofing" the system are real but difficult to determine.

Barriers that existed

- Concerns about Hazards of Ammonia System
 - Plume Study
 - Town Hall Type Meetings
- Concerns about Costs increase
 - Availability of Equipment/Installation Pricing
 - DOE Funding
- Concerns about capable installation and maintenance contractors.
 - Install was not difficult but need experienced person at start-up

Lessons Learned

- NH3 Screw Compressors are not as readily available as typical HFC semi-hermetic compressors. Since all modules and compressors are the same size recommend having extra compressor on site.
- Other ammonia related components are not readily available and should be considered to have on site:
 - Steel solenoid Valves
 - Shaft seals

Lessons Learned

- Work out control strategies for these non-standard systems up front.
- Try not to use separate control manufacture for Ammonia system and CO2 system.

Lessons Learned

- I believe potential for low charge Ammonia/CO2 systems in the United States is strong.
 - Can be designed to be safe for general public and service technicians
 - Can be used in any climate zone
 - Reduce energy use over industry standard HFC systems
 - Major Reduction in Carbon Footprint
 - Costs will come down with more use (Industrial Sector already seeing this)

Similar Projects

- Wholefoods Northern California
- Albertsons Carpentaria, California

Other DeCA Natural Refrigerant System

Transcritical CO2 System

- DeCA Commissary Spangdahlem Air Base, Germany
- DeCA Commissary Newport, Rhode Island

NH3/CO2 Secondary System

DeCA Distribution Center – Kanto Plains, Japan

DeCA continues to evaluate rapidly evolving technical solutions to reduce F-gas usage.

- Things that need to happen for Ammonia/CO2 systems to be more widely accepted
 - Public Opinion to change on safety concerns of low charged ammonia systems
 - Reduction in Costs
 - More manufactures being able to provide a proven system.
 - More Installation contractors with knowledge of install.
 - More Service technicians with experience on servicing.
 - Cost Associated with refrigerant releases or CO2 Emissions

25 & 26 June - Atlanta, Georgia

Contact Information

Rob Arthur, PE/PEng CTA Architects Engineers

roba@ctagroup.com

406-544-7825 cell

800-757-9522 office