Atmosphere 2010

Economic benefits of high temperature ammonia heat pumps (two case stories)

Kenneth Hoffmann *Key Account Manager*

Project Description

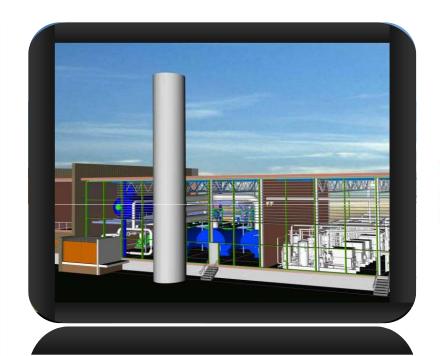
Life Cycle Cost Ammonia
Heat Pump

VS

R134a
Heat Pump

Capital Cost

Maintenance Cost


Energy Efficiency

District heating

15 MW, 90°C, District heating 3 x 2 stage 5.0 MW Systems

COPheating = 3.0

Evaporating temp. 2°C Sea water 8 to 4°C

Condensing temp. 89°C
District heating water 60 – 90°C

Capital cost (Indexed)

Compress

Heat exch

Refrigeran

Total capit

Typical U-Values for gravity fed evaporator [W/m²K]

Ammonia	R134a

Clean 2200 1100

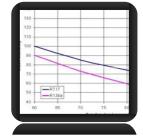
R134a

100

150

3600

110


Menu

Energy efficiency

	Ammonia	R134a
COP _{heating}	3.0	2.6
Energy cost per year	£1,290,000	£1,488,000
Carbon footprint (indirect)		10 100
[1,000 kg]	11,610	13,400
Carbon footprint (direct) [1,000 kg]	0	1,000
Total Carbon footprint per year [1,000 kg]	11,610	14,200

Maintenance cost (Indexed)

	Ammonia	R134a
Yearly maintenance	100	250

- •80,000 hours between overhauls
- Equalising forces
- Low wear and tear on components

Project Description

Life Cycle Cost Ammonia
Heat Pump

VS

Gas fired

Boiler

Capital Cost

Maintenance Cost

Energy Efficiency

Menu

Process heating and cooling

1.6 MW, 61°C, Process heating 2 x 1 stage 0.8 MW Systems

Chocolate factory

COPheating = 3.39

Evaporating temp. -5°C Glycol/water 5°C to 0°C

Condensing temp. 60°C
Process heating water 12°C to 60°C

Capital cost (Indexed)

	Ammonia	Boiler
Total capital cost comparison	120	100



Energy efficiency

	Ammonia	Boiler
COP _{heating}	3.39	0.6
Energy cost per year	£170,000	£400,000
	T	T
Carbon footprint (indirect) [1,000 kg]	1,530	2,880
Carbon footprint (direct) [1,000 kg]	0	0
Total Carbon footprint per year [1,000 kg]	1,530	2,880

Maintenance cost (Indexed)

	Ammonia	Boiler
Yearly maintenance	250	100

- •80,000 hours between overhauls
- Equalising forces
- Low wear and tear on components

Life cycle cost

Based on 25 years life of equipment

	NPV Cost	Carbon Footprint [1,000 kg]
Ammonia heat pump	£15,033,000	290,000
Ammonia heat pump (cooling + heating)	£6,440,000	125,000
R134 heat pump	£17,350,000	335,000
Gas boiler	£31,300,000	480,000

Conclusion

Deployment of ammonia heat pumps HOW?

- Reverse Western society's disposable culture
- Low Carbon footprint investments
- Long term investments
- Longer warranties: 3 years, 5 years or lifetime
- Cheaper, robust and future proof
- Priceless benefit of installation like desalination

