

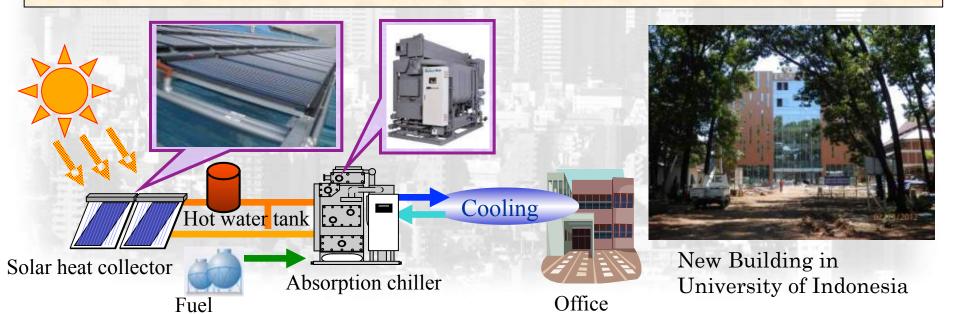
3-5 February 2015 in Tokyo

PERFORMANCE OF SOLAR AIR-CONDITIONING SYSTEM USING SOLAR ABSORPTION CHILLER IN INDONESIA

Jongsoo JEONG,	
Waseda University	
jeong@aoni.waseda.jp	
Hajime Yabase,	Kawasaki
Thermal Engineering Co., Ltd.	
yabase_h-kte@corp.khi.co.jp	
Kiyoshi Saito,	Waseda
University	
saito@waseda.jp	
Muhammad Idrus Alhamid,	University
of Indonesia	
mamak@eng.ui.ac.id	
Nasruddin,	
University of Indonesia	
nasruddin @eng.ui.ac.id	

1. Introduction

solutions for asia


3.

natural refrigerants

This project includes detailed design of cooling absorption system utilizing solar energy, and also local workshops for possible business expansion in Indonesia.

"Entrusted business on the technical cooperation for solar aided air-conditioning system in Indonesia started in 2013." sponsored by Ministry of Environment Japan.

Solar Cooling System in University of Indonesia (UI) has been used since Jan. 2014

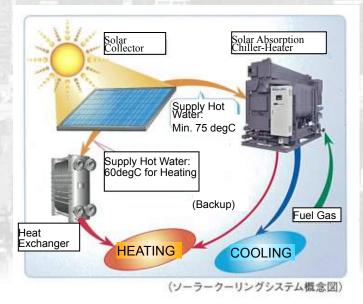
2. Solar Absorption Chiller

3-5 February 2015 in Tokyo

natural refrigerants

We have developed the absorption chiller utilizing a solar power. Since our developed absorption chiller utilizes solar energy which is renewable, it contributes to energy saving and minimizing CO2 emission.

Drastic reduction of fuel consumption


Fuel gas reduction rate: 32%

(at the rated point):

Can be operated by 55% load with only solar hot water

Lowest temperature of solar hot water supplied to the chiller: 75 degC

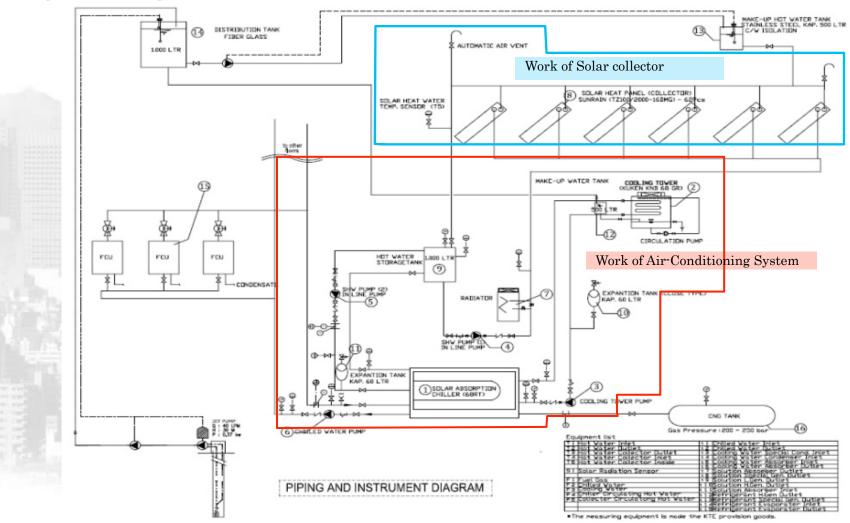
ATMO **Sphere** 2. Solar Absorption Chiller

solutions for asia

natural refrigerants

3-5 February 2015 in Tokyo

Basic Specification of Solar Absorption Chiller


		Solar absorption chiller-heater		
			Inlet tenmp. of hot water :90°C	Inlet tenmp. of hot water :75°C
Coefficient of performance (COP)	With hot water	-	1.91	1.43
	Without hot water	-	1.30	1.30
Heating efficiency	(Without hot water)	_	0.86	0.86
Chilled water -	Inlet-Outlet temp.	°C	15.0→7.0	15.0→7.0
	Flow rate	m ³ /(h+RT)	0.378	0.378
Cooling water		32.0→37.2		
Cooling water -	Flow rate	m ³ /(h+RT)	1.00	1.00
Hot water	Inlet-Outlet temp.	°C	90.0→79.5	75.0→71.9
	Flow rate	m ³ /(h+RT)	0.115	0.115
Heat	; recovery rate	kW/RT	1.40	0.41
Ener	rgy saving rate	%	32	9
Max. cooling capasity onli hot water heating %		%	55	28

3. Solar Air-conditioning System

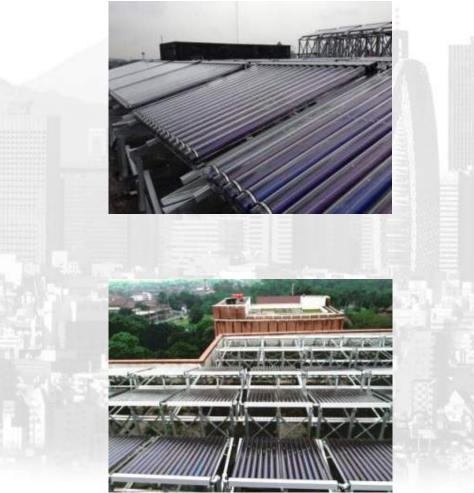
3-5 February 2015 in Tokyo

natural refrigerants

3. Solar Air-conditioning System

3-5 February 2015 in Tokyo

Work of Air-Conditioning System


3. Solar Air-conditioning System

3-5 February 2015 in Tokyo

natural refrigerants

Work of Solar Collector

solutions for asia

natural refrigerants

3-5 February 2015 in Tokyo

4. Estimation

Verification of the effects relating to a test done in the University of Indonesia regarding solar cooling absorption chiller system utilizing solar energy.(1)

Comparison equipment specification

		Solar ab	sorption chiller	Conventional electric chiller	
Capacity Fuel gas		orption chille	r x 1	Electric chiller x 1	
		-		Capacity 281kW	
		consumption:(Hh=9080kcal/m ³ _N)		Electricity consumption:	
		olar using :14.0m ³ _N /h		70.25kW(COP=4)	
				70.25KW (001 -47	
		olar using:20.5m ³ _N /h			
		y consumptio		4	
Facility So	Solar hot	water pump	No.1 : 1.5kW		
	Solar hot	water pump No.2:0.75kW			
Radiator:		1.5kW			
Compa	rison bet	ween solar a	bsorption chiller and con	ventional chiller (RP basis)	
			Electric chiller	Solar absorption chiller	
Amount of Energy		Electricity	183,600 kWh	16,369 kWh	
Amount	Fuel gas m N		45,974 m ³ _N		
Energy cost		Electricity	181,257,972 RP	16,535,437 RP	
		Fuel gas	- RP	96,085,660 RP	
		Total	181,257,972 RP	112,621,097 RP	
		Difference		-68,636,875 RP	
		rate	100 %	62 %	
		Electricity	183,049 kg-CO ₂	16,320 kg-CO ₂	
		Fuel gas	- kg-CO ₂	88,730 kg-CO ₂	
CO ₂ er	mission	Total	183,049 kg-CO2	105,050 kg-CO2	
CO ₂ er	mission				

solutions for asia

natural refrigerants

3-5 February 2015 in Tokyo

4. Estimation

Verification of the effects relating to a test done in the University of Indonesia regarding solar cooling absorption chiller system utilizing solar energy.(2)

Assessment in the entire Indonesia

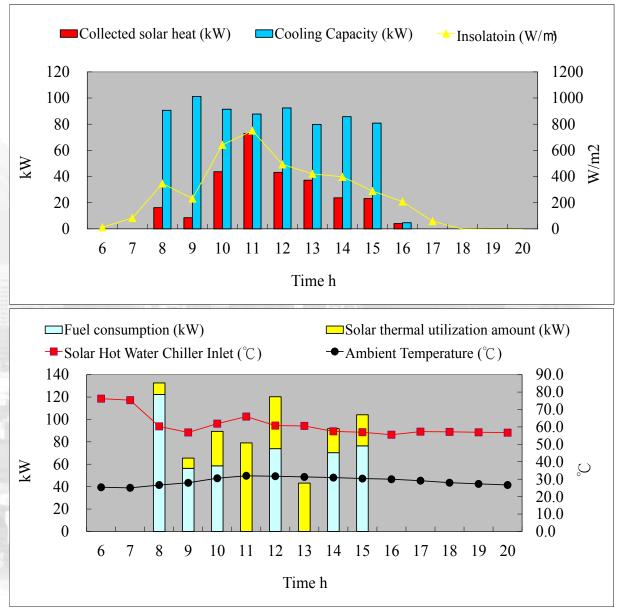
- 1. In one year
 - CO2 reduction ⇒ 94,000 tCO2/year
 - Sox and Nox reduction \Rightarrow Sox 1.5 t/year ,Nox 0.85 t/year
- 2. Ten fiscal years
 - CO2 reduction \Rightarrow 940,000 tCO2/year
 - Sox and Nox reduction ⇒ Sox 15 t/year ,Nox 8.5 t/year

%When assuming that the like quantity is introduced after year second. The effect triples in year third., ten in year tenth.

3. Trial condition

- The following sectors are prospective introduction sites: industrial sectors with full gas utilities, commercial sectors, government and public offices, hospitals, and hotels.
- By considering the introduction ratio of gas absorption chillers for central air conditioning in the above sectors in Japan, we aim to introduce 100 units of 96,000 USRT (340,000kW) yearly starting 2015 as a reference target for the introduction amount.

5. Test Result

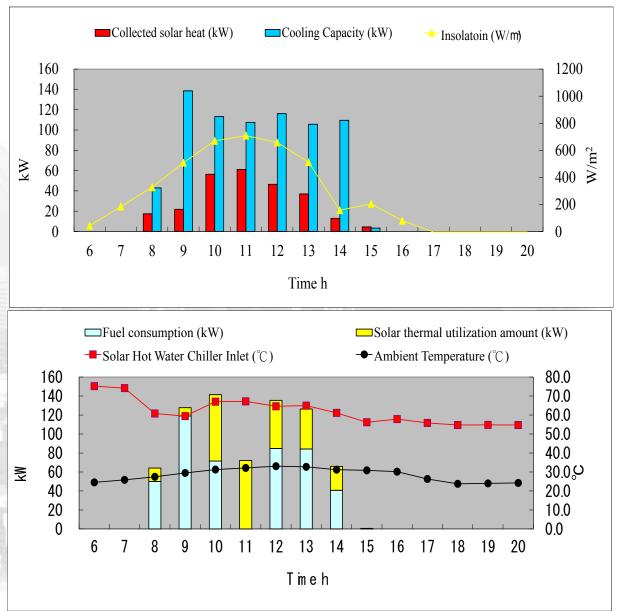

solutions for asia natural refrigerants

ATMO sphere

3-5 February 2015 in Tokyo

- **14th Feb. 2014**
- hot water obtained from the solar energy collector is used at 60~75°C

Enabled gas amount to be reduced by 26.5%



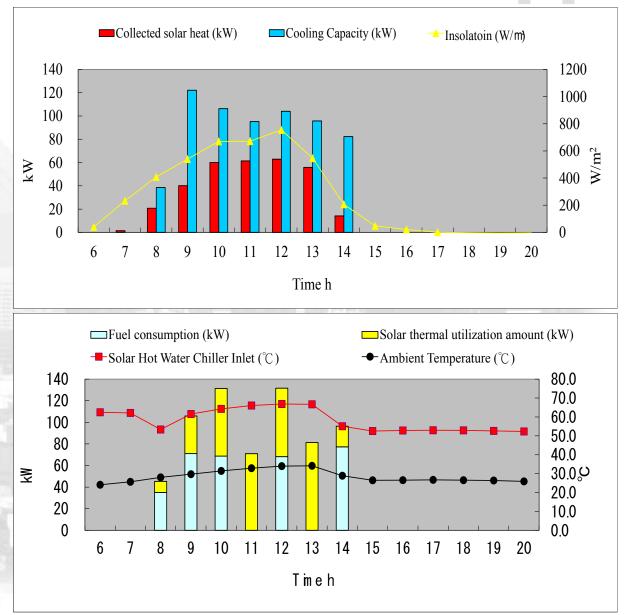
5. Test Result

solutions for asia natural refrigerants

ATMO sphere

- 3-5 February 2015 in Tokyo
- **20th March 2014**
- hot water obtained from the solar energy collector is used at 60~67°C
- Enabled gas amount to be reduced by 27.9%

5. Test Result


solutions for asia natural refrigerants

ATMO sphere

3-5 February 2015 in Tokyo

- **17th April 2014**
- hot water obtained from the solar energy collector is used at 55~69°C

Enabled gas amount to be reduced by 39.7%

ASIA ATMO Solutions for asia natural refrigerants

3-5 February 2015 in Tokyo

Thank you very much!